CS631 - Advanced Programming in the UNIX Environment

CS631 - Advanced Programming in the UNIX
Environment

Process Groups, Sessions, Signals

Department of Computer Science
Stevens Institute of Technology
Jan Schaumann
jschauma@stevens.edu
https://stevens.netmeister.org/631/

Slide 1

CS631 - Advanced Programming in the UNIX Environment Slide 2

Code reading

A volunteer, please...

CS631 - Advanced Programming in the UNIX Environment Slide 3
Login Process

[...]

total memory = 768 MB

avail memory = 732 MB

timecounter: Timecounters tick every 10.000 msec
mainbus0 (root)

[...]

boot device: xbd3

root on xbd3a dumps on xbd3b
mountroot: trying lfs...

mountroot: trying ffs...

root file system type: ffs

init: copying out path ¢/sbin/init’ 11
[...]

Starting local daemons:.

Starting sendmail.

Starting sshd.

Starting snmpd.

Starting cron.

NetBSD/amd64 (panix.netmeister.org) (console)
login: jschauma
Password:
Last login: Sat Sep 10 14:27:56 2011 on comnsole
Copyright (c) 1982, 1986, 1989, 1991, 1993
The Regents of the University of California. All rights reserved.

NetBSD 5.0.2 (PANIX-VC) #2: Tue Oct 19 16:30:57 EDT 2010

Welcome to NetBSD!

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 4
Login Process

fork fork lork

PID 2 / lPIDﬂ PO 10
N B W]

L 1
exac 2xac ExXEC

Plnz‘v ¥ P2 ¥ P00
L] =]
exee
¥ FID3
it 2xXac
=34
¥ FiDa

fork

fork

FID 21 W, PID22 PO 23
finish | finsh I I finish I
T T T I
aXEC exac axec ENBC
PID 20 PR 4 ¥ PiDzE ¥ FiDzz
| Is I | mara file.c i | ccfilec i | JSa.oul
exit
L L A i 3 b

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 5

Login Process

@ init(8)
@ reads /etc/ttys

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 6

Login Process

@ init(8)
@ reads /etc/ttys
@ getty(8)
@ opens terminal
@ prints “login: ”
@ reads username

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 7

Login Process

@ init(8)
@ reads /etc/ttys
@ getty(8)
@ opens terminal
@ prints “login: ”
@ reads username
@ login(1)
@ getpass(3), encrypt, compare to getpwnam(3)

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 8

Login Process

@ init(8)
@ reads /etc/ttys
@ getty(8)
@ opens terminal
@ prints “login: ”
@ reads username
@ login(1)
@ getpass(3), encrypt, compare to getpwnam(3)
@ regqister login in system databases

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 9

Login Process

@ init(8)
@ reads /etc/ttys
@ getty(8)
@ opens terminal
@ prints “login: ”
@ reads username
@ login(1)
@ getpass(3), encrypt, compare to getpwnam(3)
@ regqister login in system databases
@ read/display various files

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 10

Login Process

@ init(8)
@ reads /etc/ttys
@ getty(8)
@ opens terminal
@ prints “login: ”
@ reads username
@ login(1)
@ getpass(3), encrypt, compare to getpwnam(3)
@ regqister login in system databases

@ read/display various files
@ initgroups(3)/setgid(2), initialize environment

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 11

Login Process

@ init(8)
@ reads /etc/ttys
@ getty(8)
@ opens terminal
@ prints “login: ”
@ reads username
@ login(1)
@ getpass(3), encrypt, compare to getpwnam(3)
@ regqister login in system databases
@ read/display various files
@ initgroups(3)/setgid(2), initialize environment
@ chown(2) terminal device

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 12

Login Process

@ init(8)
@ reads /etc/ttys
@ getty(8)
@ opens terminal
@ prints “login: ”
@ reads username
@ login(1)
@ getpass(3), encrypt, compare to getpwnam(3)
@ regqister login in system databases
@ read/display various files
@ initgroups(3)/setgid(2), initialize environment
@ chown(2) terminal device
@ chdir(2) to new home directory

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 13

Login Process

@ init(8)
@ reads /etc/ttys
@ getty(8)
@ opens terminal
@ prints “login: ”
@ reads username
@ |ogin(1)
@ getpass(3), encrypt, compare to getpwnam(3)
@ register login in system databases
@ read/display various files
@ initgroups(3)/setgid(2), initialize environment
@ chdir(2) to new home directory
@ chown(2) terminal device
@ setuid(2) to user’s uid, exec(3) shell

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 14

Login Process

Let’s revisit the process relationships for a login:

kernel = init(8) # explicit creation

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 15

Login Process

Let’s revisit the process relationships for a login:

kernel = init(8) # explicit creation

init(8) = getty(8) # fork(2)

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 16

Login Process

Let’s revisit the process relationships for a login:

kernel = init(8) # explicit creation
init(8) = getty(8) # fork(2)

getty(8) = login(1) # exec(3)

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 17

Login Process

Let’s revisit the process relationships for a login:

kernel = init(8) # explicit creation
init(8) = getty(8) # fork(2)
getty(8) = login(1) # exec(3)

login(1) = $SHELL # exec(3)

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment

Login Process

Let’s revisit the process relationships for a login:

kernel =
init(8) =
getty(8) =
login(1) =

$SHELL =

init(8) # explicit creation
getty(8) # fork(2)
login(1) # exec(3)
$SHELL # exec(3)

Is(1) # fork(2) + exec(3)

Slide 18

Lecture 06: Process Groups, Sessions, Signals

October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 19

Login Process

init(8) # PID 1, PPID 0, EUID 0

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 20

Login Process

init(8) #PID1,PPIDO, EUIDO

getty(8) #PID N, PPID 1, EUID 0

CS631 - Advanced Programming in the UNIX Environment Slide 21

Login Process

init(8) # PID 1, PPID 0, EUID 0
getty(8) #PID N, PPID 1, EUID 0

login(1) #PID N, PPID 1, EUID 0

CS631 - Advanced Programming in the UNIX Environment Slide 22

Login Process

init(8) #PID 1, PPID 0, EUID 0
getty(8) # PID N, PPID 1, EUID 0
login(1) # PID N, PPID 1, EUID 0

$SHELL # PID N, PPID 1, EUID U

Login Process

CS631 - Advanced Programming in the UNIX Environment

init8) #PID 1, PPID 0, EUID 0
getty(8) #PID N, PPID 1, EUID 0
login(1) #PID N, PPID 1, EUID 0
$SHELL # PID N, PPID 1, EUID U

Is(1) # PID M, PPID N, EUID U

pstree -hapun | more

Slide 23

CS631 - Advanced Programming in the UNIX Environment Slide 24
Process Groups

#include <unistd.h>
pid_t getpgrp(void);
pid_t getpgid(pid_t pid);
Returns: process group ID if OK, -1 otherwise

@ in addition to having a PID, each process also belongs to a process
group (collection of processes assocaited with the same job /
terminal)

@ each process group has a unique process group 1D

@ process group IDs (like PIDs) are positive integers and can be stored
in a pid_t data type
@ each process group can have a process group leader

@ |eader identified by its process group ID == PID
@ |eader can create a new process group, create processes in the
group
@ a process can set its (or its children’s) process group using
setpgid(2)

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 25

Process Groups

—
E login shell
L |

Process group

init = login shell
$

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 26

Process Groups

Ic wein shell | procl DG

FOCESSE Zro FOCESS EIOUp
B E

init = login shell

$ procl | proc2 &
[1] 10306
$

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 27

Process Groups

FOCESSE Zro FOCESS EIOUp
B E

Process group

init = login shell

$ procl | proc2 &
[1] 10306
$ proc3 | procd | proch

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 28
Process Groups and Sessions

#include <unistd.h>

pid-t setsid(void);
Returns: process group ID if OK, -1 otherwise

A session is a collection of one or more process groups.

If the calling process is not a process group leader, this function creates
a new session. Three things happen:

@ the process becomes the session leader of this new session
@ the process becomes the process group leader of a new process

group
@ the process has no controlling terminal

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment

Process Groups

Slide 29

P ——— P e e S s S

1
| login shell procl Droc?
| Process group ProCess group
— S— — S — N
session

init = login shell

$ procl | proc2 &
[1] 10306
$ proc3 | procd | proch

Lecture 06: Process Groups, Sessions, Signals

October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 30

Process Groups and Sessions

S05510Nn

1 - o =

|] Iugmsiwll|l l procl ‘ l proc? | I procl ‘ | procd

el -] L - - = -y - -l
backgrounsd process group background process group
spsion leader =
controlling process

. e sy e i i el

controlling
terminal

init = login shell

$ procl | proc2 &
[1] 10306
$ proc3 | procd | proch

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 31

Process Groups and Sessions

sh Exec ps
&% (1989) ™ (1989)
-
{(:?_:fi]} ___‘f._Gl;’k__- “3:;;} ;F’ipf‘linr
w ‘P [l
». ~ 3y |
"._:::“ h \ sh exes catl
Y (1990) (1990)
J?j_;‘::?;ﬁﬁ exec =
i
W Y _..--"'\“\;i;‘;““e
.| cat2
1 (1988)
$ (ps -o pid,ppid,pgid,sid,comm; sleep 1;) | ./catl | ./cat2
PID PPID PGRP SESS COMMAND
1989 949 7736 949 ps
1990 949 7736 949 catl
1988 949 7736 949 cat?2
949 21401 949 949 ksh

Lecture 06: Process Groups, Sessions, Signals

October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 32

Job Control

login shell

foreground
i? TOCESs erin P‘

$ ps -o pid,ppid,pgid,sid,comm
PID PPID PGRP SESS COMMAND

24251 24250 24251 24251 ksh

24620 24251 24620 24251 ps

$

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 33

Job Control

login shell

foreground ‘

P rOfess gron l"l

$ ps -o pid,ppid,pgid,sid,comm
PID PPID PGRP SESS COMMAND

24251 24250 24251 24251 ksh

24620 24251 24620 24251 ps

$ echo $7

0

$

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 34

Job Control

login shell

I
background foreground
‘ Process groups) process group

$ /bin/sleep 30 &

[1] 24748

$ ps -o pid,ppid,pgid,sid,comm
PID PPID PGRP SESS COMMAND

24251 24250 24251 24251 ksh

24748 24251 24748 24251 sleep

24750 24251 24750 24251 ps

$

[1] + Done /bin/sleep 30 &

$

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment

Job Control

Slide 35

login shell

background
process group(s)

tesetpgrp to set process group
tor controlling terminal

foreground
process group

terminal
driver

user at a
terminal

Lecture 06: Process Groups, Sessions, Signals

October 15, 2018

CS631 - Advanced Programming in the UNIX Environment

Job Control

Slide 36

$ cat >file

Input from terminal,
Output to terminal.
"D

$ cat file

Input from terminal,
Output to terminal.
$ cat >/dev/null
Input from terminal,
Output to /dev/null.
Waiting forever...
Or until we send an interrupt signal.
~C

$

background
process group(s)

login shell

g terminal

[in

for control

tosetpgrp to set process group

foreground
process group

user at a
terminal

K .
1
terminal
driver
T

Lecture 06: Process Groups, Sessions, Signals

October 15, 2018

CS631 - Advanced Programming in the UNIX Environment

Job Control

Slide 37

$ cat file &

[1] 2056

$ Input from terminal,
Output to terminal.

[1] + Done cat file &
$ stty tostop

$ cat file &

[1] 4655

$

[1] + Stopped(SIGTTOU) cat file &
$ fg

cat file

Input from terminal,

Output to terminal.

$

background
process group(s)

login shell ‘

ling terminal

ol

for control

tosetpgrp to set process group

foreground
process group

w
terminal
driver

user at a
terminal

Lecture 06: Process Groups, Sessions, Signals

October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 38

Signals

SHIT HAPPENS

And most of the time it sucks

CS631 - Advanced Programming in the UNIX Environment Slide 39

Signal Concepts

Signals are a way for a process to be notified of asynchronous events.
Some examples:

@ a timer you set has gone off (SIGALRM)
@ some I/O you requested has occurred (SIGIO)
@ a user resized the terminal "window” (SIGWINCH)

@ a user disconnected from the system (SIGHUP)
L

See also: signal(2)/signal(3)/signal(7) (note: these man pages
vary significantly across platforms!)

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 40

Signal Concepts

Besides the asynchronous events listed previously, there are many ways
to generate a signal:

@ terminal generated signals (user presses a key combination which
causes the terminal driver to generate a signal)

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 41

Signal Concepts

Besides the asynchronous events listed previously, there are many ways
to generate a signal:

@ terminal generated signals (user presses a key combination which
causes the terminal driver to generate a signal)

@ hardware exceptions (divide by 0, invalid memory references, etc)

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 42

Signal Concepts

Besides the asynchronous events listed previously, there are many ways
to generate a signal:

@ terminal generated signals (user presses a key combination which
causes the terminal driver to generate a signal)

@ hardware exceptions (divide by 0, invalid memory references, etc)

@ kil11(1) allows a user to send any signal to any process (if the user
is the owner or superuser)

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 43

Signal Concepts

Besides the asynchronous events listed previously, there are many ways
to generate a signal:

@ terminal generated signals (user presses a key combination which
causes the terminal driver to generate a signal)

@ hardware exceptions (divide by 0, invalid memory references, etc)

@ kil11(1) allows a user to send any signal to any process (if the user
is the owner or superuser)

@ ki11(2) (a system call, not the unix command) performs the same
task

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 44

Signal Concepts

Besides the asynchronous events listed previously, there are many ways
to generate a signal:

@ terminal generated signals (user presses a key combination which
causes the terminal driver to generate a signal)

@ hardware exceptions (divide by 0, invalid memory references, etc)

@ kil11(1) allows a user to send any signal to any process (if the user
is the owner or superuser)

@ ki11(2) (a system call, not the unix command) performs the same
task

@ software conditions (other side of a pipe no longer exists, urgent data
has arrived on a network file descriptor, etc.)

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 45

kill(2) and raise(3)

#include <sys/types.h>
#include <signal.h>

int kill(pid-t pid, int signo);
int raise(int signo);

@ pid > 0 - signal is sent to the process whose PID is pid

@ pid == 0 — signal is sent to all processes whose process group ID
equals the process group ID of the sender

@ pid == -1 — POSIX.1 leaves this undefined, BSD defines it (see
kil1(2))

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 46

Signal Concepts

Once we get a signal, we can do one of several things:

@ [gnore it. (note: there are some signals which we CANNOT or
SHOULD NQOT ignore)

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 47

Signal Concepts

Once we get a signal, we can do one of several things:

@ [gnore it. (note: there are some signals which we CANNOT or
SHOULD NQOT ignore)

@ Catch it. That is, have the kernel call a function which we define
whenever the signal occurs.

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 48

Signal Concepts

Once we get a signal, we can do one of several things:

@ [gnore it. (note: there are some signals which we CANNOT or
SHOULD NQOT ignore)

@ Catch it. That is, have the kernel call a function which we define
whenever the signal occurs.

@ Accept the default. Have the kernel do whatever is defined as the
default action for this signal

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 49

Signal Concepts

$ cc -Wall ../0Ol-intro/simple-shell.c

$./a.out

$$ ~C

$ echo $7

130

$ cc -Wall ../0l-intro/simple-shell2.c
$./a.out

$$ °C

Caught SIGINT!

$$

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 50

signal(3)

#include <signal.h>
void (*signal(int sigmo, void (*func) (int))) (int);

Returns: previous disposition of signal if OK, SIG_ERR otherwise

CS631 - Advanced Programming in the UNIX Environment Slide 51

signal(3)

#include <signal.h>

void (*signal(int sigmo, void (*func) (int))) (int);

Returns: previous disposition of signal if OK, SIG_ERR otherwise

func can be:
@ SIG_IGN which requests that we ignore the signal signo
@ SIG_DFL which requests that we accept the default action for signal
signo

@ or the address of a function which should catch or handle a signal

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 52

Signal Examples

$ cc -Wall siguser.c

$./a.out
~Z
$ bg

$ ps | grep a.oult]

11106 ttys002 0:00.00 ./a.out

$ kill -USR1 11106

received SIGUSR1

$ kill -USR2 11106

received SIGUSR2

$ kill -INT 11106

$

[2]- Interrupt ./a.out
$

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 53

Program Startup

When a program is execed, the status of all signals is either default or
ignore.

October 15, 2018

Lecture 06: Process Groups, Sessions, Signals

CS631 - Advanced Programming in the UNIX Environment Slide 54

Program Startup

When a program is execed, the status of all signals is either default or
ignore.

When a process fork(2)s, the child inherits the parent’s signal
dispositions.

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 55

Program Startup

When a program is execed, the status of all signals is either default or
ignore.

When a process fork(2)s, the child inherits the parent’s signal
dispositions.

A limitation of the signal (3) function is that we can only determine the
current disposition of a signal by changing the disposition.

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 56
sigaction(2)

#include <signal.h>

int sigaction(int signo, const struct sigaction *act, struct sigaction *oact);

This function allows us to examine or modify the action associated with a
particular signal.

struct sigaction {

void (*sa_handler) (); /* addr of signal handler, or
SIG_IGN or SIG_DFL */

sigset_t sa_mask; /* additional signals to block */

int sa_flags; /* signal options */

+;

signal (3) is (nowadays) commonly implemented via sigaction(2).

CS631 - Advanced Programming in the UNIX Environment Slide 57

More advanced signal handling via signal sets

@ int sigemptyset(sigset t *set) —intialize a signal set to be empty

@ int sigfillset(sigset t *set) —initialize a signal set to contain all
signals

@ int sigaddset(sigset t *set, int signo)
@ int sigdelset(sigset t *set, int signo)

@ int sigismember(sigset t *set, int signo)

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 58

Resetting Signal Handlers

Note: on some systems, invocation of the handler resets the disposition
to SIG_DFL!

$ cc -DSLEEP=3 -Wall pending.c

$./a.out

=> Establishing initial signal hander via signal(3).
“\sig_quit: caught SIGQUIT (1), now sleeping

sig_quit: exiting (1)

=> Time for a second interruption.

“\sig_quit: caught SIGQUIT (2), now sleeping

sig_quit: exiting (2)

=> Establishing a resetting signal hander via signal(3).
“\sig_quit_reset: caught SIGQUIT (3), sleeping and resetting.
sig_quit_reset: restored SIGQUIT handler to default.

=> Time for a second interruption.

“\Quit: 3

$

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 59

Signal Queuing

Signals arriving while a handler runs are queued.

$./a.out >/dev/null

“\sig_quit: caught SIGQUIT (1), now sleeping
"N\ \"\"\"\sig_quit: exiting (1)

sig_quit: caught SIGQUIT (2), now sleeping
“\"\"\"\sig_quit: exiting (2)

sig_quit: caught SIGQUIT (3), now sleeping
“\sig_quit: exiting (3)

sig_quit: caught SIGQUIT (4), now sleeping
sig_quit: exiting (4)

[...]

(Note that "simultaneously” delivered signals may be "merged” into one.)

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 60

Signal Queuing

Signals arriving while a handler runs are queued.
Unless they are blocked.

$./a.out

[...]

=> Establishing a resetting signal hander via signal(3).
“\sig_quit_reset: caught SIGQUIT (1), sleeping and resetting.
sig_quit_reset: restored SIGQUIT handler to default.

=> Time for a second interruption.

=> Blocking delivery of SIGQUIT...

=> Now going to sleep for 3 seconds...

"\

=> Checking if any signals are pending...

=> Checking if pending signals might be SIGQUIT...
Pending SIGQUIT found.

=> Unblocking SIGQUIT...

Quit: 3

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 61

Signal Queuing

Multiple identical signals are queued, but you can receive a different
signal while in a signal handler.

$./a.out >/dev/null

“\sig_quit: caught SIGQUIT (1), now sleeping
"\"\"\"\"Csig_int: caught SIGINT (2), returning immediately
sig_quit: exiting (2)

sig_quit: caught SIGQUIT (3), now sleeping

“\"\sig_quit: exiting (3)

sig_quit: caught SIGQUIT (4), now sleeping

sig_quit: exiting (4)

[...]

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 62

Interrupted System Calls

Some system calls can block for long periods of time (or forever). These
include things like:

@ read(2)s from files that can block (pipes, networks, terminals)

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 63

Interrupted System Calls

Some system calls can block for long periods of time (or forever). These
include things like:

@ read(2)s from files that can block (pipes, networks, terminals)
@ write(2) to the same sort of files

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 64

Interrupted System Calls

Some system calls can block for long periods of time (or forever). These
include things like:

@ read(2)s from files that can block (pipes, networks, terminals)
@ write(2) to the same sort of files

@ open(2) of a device that waits until a condition occurs (for example, a
modem)

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 65

Interrupted System Calls

Some system calls can block for long periods of time (or forever). These
include things like:

@ read(2)s from files that can block (pipes, networks, terminals)
@ write(2) to the same sort of files

@ open(2) of a device that waits until a condition occurs (for example, a
modem)

@ pause(3), which purposefully puts a process to sleep until a signal
occurs

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 66

Interrupted System Calls

Some system calls can block for long periods of time (or forever). These
include things like:

@ read(2)s from files that can block (pipes, networks, terminals)
@ write(2) to the same sort of files

@ open(2) of a device that waits until a condition occurs (for example, a
modem)

@ pause(3), which purposefully puts a process to sleep until a signal
occurs

@ certain ioct1(3)s
@ certain IPC functions

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 67

Interrupted System Calls

Some system calls can block for long periods of time (or forever). These
include things like:

@ read(2)s from files that can block (pipes, networks, terminals)
@ write(2) to the same sort of files

@ open(2) of a device that waits until a condition occurs (for example, a
modem)

@ pause(3), which purposefully puts a process to sleep until a signal
occurs

@ certain ioct1(3)s
@ certain IPC functions

Catching a signal during execution of one of these calls traditionally led
to the process being aborted with an errno return of EINTR.

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 68

Interrupted System Calls

Previously necessary code to handle EINTR:

again:
if ((n = read(fd, buf, BUFFSIZE)) < 0) {
if (errno == EINTR)
goto again; /* just an interrupted system call */
/* handle other errors */
+

Nowadays, many Unix implementations automatically restart certain
system calls.

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 69

Interrupted System Calls

$ cc -Wall eintr.c

$./a.out

~C

read call was interrupted
N

$./a.out

“\a

read call was restarted
lal

$

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 70

Reentrant functions

An example of calling nonreentrant functions from a signal handler:

$ cc -Wall reentrant.c; ./a.out
in signal handler

in signal handler

in signal handler

no ’root’ found!

$./a.out

in signal handler

return value corrupted: pw_name = root
$./a.out

in signal handler

in signal handler

User jschauma not found!

$./a.out

in signal handler

in signal handler

Memory fault (core dumped)

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 71

Reentrant Functions

If your process is currently handling a signal, what functions are you
allowed to use?

See p. 306 in Stevens for a list.

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 72

Homework

Read:
@ Controlling Terminals: tty(4), termios (4)

Read, try, play with and understand all examples.

Review the discussions around an issue we discovered in a previous
class:

@ https://is.gd/x95eFp

@ https://is.gd/RqnO3R

@ https://is.gd/GYYE32
(See following slides.)

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 73

An entertaining tangent in code exploration...

$ timeout 60 /bin/sh -c "ls | more"
VS

$ /bin/sh -c "timeout 60 /bin/sh -c \"ls | more\""

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 74
An entertaining tangent in code exploration...

$ timeout 60 /bin/sh -c "ls | more; sleep 60"

$ pstree -hapun

[...]

| | ‘~ksh, 10981

I | ‘-sh,12044 -c timeout 60 /bin/sh -c "ls | more; sleep 30"

I | ‘~timeout, 12045 60 /bin/sh -c 1ls | more; sleep 30

I | ‘-sh,12046 -c 1ls | more; sleep 30

| | ‘-sleep, 12049 30

[...]

$ ps x -o pid,ppid,pgid,sid,tpgid,stat,comm | egrep -v "(ssh|psl|egrep)"
PID PPID PGID ©SESS TPGID STAT COMMAND

7676 7675 7676 7676 7676 Ss+ ksh

10981 10980 10981 10981 12044 Ss ksh

12044 10981 12044 10981 12044 S+ sh

12045 12044 12045 10981 12044 S timeout

12046 12045 12045 10981 12044 S sh

12049 12046 12045 10981 12044 S sleep

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 75
An entertaining tangent in code exploration...

$ /bin/sh -c timeout 60 "/bin/sh -c \"ls | more\""

$ pstree -hapun

[...]

| | ‘~ksh,10981

I | ‘-sh,12434 -c timeout 60 /bin/sh -c "ls | more"

I | ‘—timeout, 12435 60 /bin/sh -c 1ls | more

I | “-sh,12436 -c 1ls | more

| | |-1s,12437

I | ‘-more, 12438

[...]

$ ps x -o pid,ppid,pgid,sid,tpgid,stat,comm | egrep -v "(ssh|ps|egrep)"
PID PPID PGID SESS TPGID STAT COMMAND

7676 7675 7676 7676 7676 Ss+ ksh

10981 10980 10981 10981 12434 Ss ksh

12434 10981 12434 10981 12434 S+ sh

12435 12434 12435 10981 12434 S timeout

12436 12435 12435 10981 12434 T sh

12437 12436 12435 10981 12434 T 1ls

12438 12436 12435 10981 12434 T more

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 76
An entertaining tangent in code exploration...

Use the source, Luke!

coreutils/src/timeout.c

/* Ensure we’re in our own group so all subprocesses can be killed.
Note we don’t just put the child in a separate group as
then we would need to worry about foreground and background groups
and propagating signals between them. */
if (!foreground)
setpgid (0, 0);

[...]

signal (SIGTTIN, SIG_DFL);
signal (SIGTTOU, SIG_DFL);

execvp (argv[0], argv);

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 77
An entertaining tangent in code exploration...

Use the source, Luke!

util-linux/text-utils/more.c

#define stty(fd,argp) tcsetattr(fd,TCSANOW,argp)

if ('no_tty) {
signal (SIGQUIT, onquit);
signal (SIGINT, end_it);
#ifdef SIGWINCH
signal (SIGWINCH, chgwinsz);
#endif /* SIGWINCH */
if (signal (SIGTSTP, SIG_IGN) == SIG_DFL) {
signal (SIGTSTP, onsusp);
catch_susp++;
+
stty (fileno(stderr), &otty);

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

