
CS631 - Advanced Programming in the UNIX Environment Slide 1

CS631 - Advanced Programming in the UNIX

Environment

–

Process Groups, Sessions, Signals

Department of Computer Science

Stevens Institute of Technology

Jan Schaumann

jschauma@stevens.edu

https://stevens.netmeister.org/631/

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 2

Code reading

A volunteer, please...

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 3

Login Process

[...]

total memory = 768 MB

avail memory = 732 MB

timecounter: Timecounters tick every 10.000 msec

mainbus0 (root)

[...]

boot device: xbd3

root on xbd3a dumps on xbd3b

mountroot: trying lfs...

mountroot: trying ffs...

root file system type: ffs

init: copying out path ‘/sbin/init’ 11

[...]

Starting local daemons:.

Starting sendmail.

Starting sshd.

Starting snmpd.

Starting cron.

NetBSD/amd64 (panix.netmeister.org) (console)

login: jschauma

Password:

Last login: Sat Sep 10 14:27:56 2011 on console

Copyright (c) 1982, 1986, 1989, 1991, 1993

The Regents of the University of California. All rights reserved.

NetBSD 5.0.2 (PANIX-VC) #2: Tue Oct 19 16:30:57 EDT 2010

Welcome to NetBSD!

$

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 4

Login Process

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 5

Login Process

init(8)

reads /etc/ttys

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 6

Login Process

init(8)

reads /etc/ttys

getty(8)

opens terminal

prints “login: ”

reads username

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 7

Login Process

init(8)

reads /etc/ttys

getty(8)

opens terminal

prints “login: ”

reads username

login(1)

getpass(3), encrypt, compare to getpwnam(3)

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 8

Login Process

init(8)

reads /etc/ttys

getty(8)

opens terminal

prints “login: ”

reads username

login(1)

getpass(3), encrypt, compare to getpwnam(3)

register login in system databases

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 9

Login Process

init(8)

reads /etc/ttys

getty(8)

opens terminal

prints “login: ”

reads username

login(1)

getpass(3), encrypt, compare to getpwnam(3)

register login in system databases

read/display various files

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 10

Login Process

init(8)

reads /etc/ttys

getty(8)

opens terminal

prints “login: ”

reads username

login(1)

getpass(3), encrypt, compare to getpwnam(3)

register login in system databases

read/display various files

initgroups(3)/setgid(2), initialize environment

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 11

Login Process

init(8)

reads /etc/ttys

getty(8)

opens terminal

prints “login: ”

reads username

login(1)

getpass(3), encrypt, compare to getpwnam(3)

register login in system databases

read/display various files

initgroups(3)/setgid(2), initialize environment

chown(2) terminal device

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 12

Login Process

init(8)

reads /etc/ttys

getty(8)

opens terminal

prints “login: ”

reads username

login(1)

getpass(3), encrypt, compare to getpwnam(3)

register login in system databases

read/display various files

initgroups(3)/setgid(2), initialize environment

chown(2) terminal device

chdir(2) to new home directory

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 13

Login Process

init(8)

reads /etc/ttys

getty(8)

opens terminal

prints “login: ”

reads username

login(1)

getpass(3), encrypt, compare to getpwnam(3)

register login in system databases

read/display various files

initgroups(3)/setgid(2), initialize environment

chdir(2) to new home directory

chown(2) terminal device

setuid(2) to user’s uid, exec(3) shell

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 14

Login Process

Let’s revisit the process relationships for a login:

kernel ⇒ init(8) # explicit creation

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 15

Login Process

Let’s revisit the process relationships for a login:

kernel ⇒ init(8) # explicit creation

init(8) ⇒ getty(8) # fork(2)

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 16

Login Process

Let’s revisit the process relationships for a login:

kernel ⇒ init(8) # explicit creation

init(8) ⇒ getty(8) # fork(2)

getty(8) ⇒ login(1) # exec(3)

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 17

Login Process

Let’s revisit the process relationships for a login:

kernel ⇒ init(8) # explicit creation

init(8) ⇒ getty(8) # fork(2)

getty(8) ⇒ login(1) # exec(3)

login(1) ⇒ $SHELL # exec(3)

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 18

Login Process

Let’s revisit the process relationships for a login:

kernel ⇒ init(8) # explicit creation

init(8) ⇒ getty(8) # fork(2)

getty(8) ⇒ login(1) # exec(3)

login(1) ⇒ $SHELL # exec(3)

$SHELL ⇒ ls(1) # fork(2) + exec(3)

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 19

Login Process

init(8) # PID 1, PPID 0, EUID 0

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 20

Login Process

init(8) # PID 1, PPID 0, EUID 0

getty(8) # PID N, PPID 1, EUID 0

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 21

Login Process

init(8) # PID 1, PPID 0, EUID 0

getty(8) # PID N, PPID 1, EUID 0

login(1) # PID N, PPID 1, EUID 0

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 22

Login Process

init(8) # PID 1, PPID 0, EUID 0

getty(8) # PID N, PPID 1, EUID 0

login(1) # PID N, PPID 1, EUID 0

$SHELL # PID N, PPID 1, EUID U

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 23

Login Process

init(8) # PID 1, PPID 0, EUID 0

getty(8) # PID N, PPID 1, EUID 0

login(1) # PID N, PPID 1, EUID 0

$SHELL # PID N, PPID 1, EUID U

ls(1) # PID M, PPID N, EUID U

pstree -hapun | more

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 24

Process Groups

#include <unistd.h>

pid t getpgrp(void);

pid t getpgid(pid t pid);

Returns: process group ID if OK, -1 otherwise

in addition to having a PID, each process also belongs to a process

group (collection of processes assocaited with the same job /

terminal)

each process group has a unique process group ID

process group IDs (like PIDs) are positive integers and can be stored

in a pid t data type

each process group can have a process group leader

leader identified by its process group ID == PID

leader can create a new process group, create processes in the

group

a process can set its (or its children’s) process group using

setpgid(2)

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 25

Process Groups

init ⇒ login shell

$

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 26

Process Groups

init ⇒ login shell

$ proc1 | proc2 &

[1] 10306

$

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 27

Process Groups

init ⇒ login shell

$ proc1 | proc2 &

[1] 10306

$ proc3 | proc4 | proc5

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 28

Process Groups and Sessions

#include <unistd.h>

pid t setsid(void);

Returns: process group ID if OK, -1 otherwise

A session is a collection of one or more process groups.

If the calling process is not a process group leader, this function creates

a new session. Three things happen:

the process becomes the session leader of this new session

the process becomes the process group leader of a new process

group

the process has no controlling terminal

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 29

Process Groups

init ⇒ login shell

$ proc1 | proc2 &

[1] 10306

$ proc3 | proc4 | proc5

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 30

Process Groups and Sessions

init ⇒ login shell

$ proc1 | proc2 &

[1] 10306

$ proc3 | proc4 | proc5

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 31

Process Groups and Sessions

$ (ps -o pid,ppid,pgid,sid,comm; sleep 1;) | ./cat1 | ./cat2

PID PPID PGRP SESS COMMAND

1989 949 7736 949 ps

1990 949 7736 949 cat1

1988 949 7736 949 cat2

949 21401 949 949 ksh

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 32

Job Control

$ ps -o pid,ppid,pgid,sid,comm

PID PPID PGRP SESS COMMAND

24251 24250 24251 24251 ksh

24620 24251 24620 24251 ps

$

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 33

Job Control

$ ps -o pid,ppid,pgid,sid,comm

PID PPID PGRP SESS COMMAND

24251 24250 24251 24251 ksh

24620 24251 24620 24251 ps

$ echo $?

0

$

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 34

Job Control

$ /bin/sleep 30 &

[1] 24748

$ ps -o pid,ppid,pgid,sid,comm

PID PPID PGRP SESS COMMAND

24251 24250 24251 24251 ksh

24748 24251 24748 24251 sleep

24750 24251 24750 24251 ps

$

[1] + Done /bin/sleep 30 &

$

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 35

Job Control

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 36

Job Control

$ cat >file

Input from terminal,

Output to terminal.

^D

$ cat file

Input from terminal,

Output to terminal.

$ cat >/dev/null

Input from terminal,

Output to /dev/null.

Waiting forever...

Or until we send an interrupt signal.

^C

$

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 37

Job Control

$ cat file &

[1] 2056

$ Input from terminal,

Output to terminal.

[1] + Done cat file &

$ stty tostop

$ cat file &

[1] 4655

$

[1] + Stopped(SIGTTOU) cat file &

$ fg

cat file

Input from terminal,

Output to terminal.

$

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 38

Signals

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 39

Signal Concepts

Signals are a way for a process to be notified of asynchronous events.

Some examples:

a timer you set has gone off (SIGALRM)

some I/O you requested has occurred (SIGIO)

a user resized the terminal ”window” (SIGWINCH)

a user disconnected from the system (SIGHUP)

...

See also: signal(2)/signal(3)/signal(7) (note: these man pages

vary significantly across platforms!)

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 40

Signal Concepts

Besides the asynchronous events listed previously, there are many ways

to generate a signal:

terminal generated signals (user presses a key combination which

causes the terminal driver to generate a signal)

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 41

Signal Concepts

Besides the asynchronous events listed previously, there are many ways

to generate a signal:

terminal generated signals (user presses a key combination which

causes the terminal driver to generate a signal)

hardware exceptions (divide by 0, invalid memory references, etc)

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 42

Signal Concepts

Besides the asynchronous events listed previously, there are many ways

to generate a signal:

terminal generated signals (user presses a key combination which

causes the terminal driver to generate a signal)

hardware exceptions (divide by 0, invalid memory references, etc)

kill(1) allows a user to send any signal to any process (if the user

is the owner or superuser)

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 43

Signal Concepts

Besides the asynchronous events listed previously, there are many ways

to generate a signal:

terminal generated signals (user presses a key combination which

causes the terminal driver to generate a signal)

hardware exceptions (divide by 0, invalid memory references, etc)

kill(1) allows a user to send any signal to any process (if the user

is the owner or superuser)

kill(2) (a system call, not the unix command) performs the same

task

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 44

Signal Concepts

Besides the asynchronous events listed previously, there are many ways

to generate a signal:

terminal generated signals (user presses a key combination which

causes the terminal driver to generate a signal)

hardware exceptions (divide by 0, invalid memory references, etc)

kill(1) allows a user to send any signal to any process (if the user

is the owner or superuser)

kill(2) (a system call, not the unix command) performs the same

task

software conditions (other side of a pipe no longer exists, urgent data

has arrived on a network file descriptor, etc.)

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 45

kill(2) and raise(3)

#include <sys/types.h>

#include <signal.h>

int kill(pid t pid, int signo);

int raise(int signo);

pid > 0 – signal is sent to the process whose PID is pid

pid == 0 – signal is sent to all processes whose process group ID

equals the process group ID of the sender

pid == -1 – POSIX.1 leaves this undefined, BSD defines it (see

kill(2))

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 46

Signal Concepts

Once we get a signal, we can do one of several things:

Ignore it. (note: there are some signals which we CANNOT or

SHOULD NOT ignore)

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 47

Signal Concepts

Once we get a signal, we can do one of several things:

Ignore it. (note: there are some signals which we CANNOT or

SHOULD NOT ignore)

Catch it. That is, have the kernel call a function which we define

whenever the signal occurs.

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 48

Signal Concepts

Once we get a signal, we can do one of several things:

Ignore it. (note: there are some signals which we CANNOT or

SHOULD NOT ignore)

Catch it. That is, have the kernel call a function which we define

whenever the signal occurs.

Accept the default. Have the kernel do whatever is defined as the

default action for this signal

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 49

Signal Concepts

$ cc -Wall ../01-intro/simple-shell.c

$./a.out

$$ ^C

$ echo $?

130

$ cc -Wall ../01-intro/simple-shell2.c

$./a.out

$$ ^C

Caught SIGINT!

$$

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 50

signal(3)

#include <signal.h>

void (*signal(int signo, void (*func)(int)))(int);

Returns: previous disposition of signal if OK, SIG ERR otherwise

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 51

signal(3)

#include <signal.h>

void (*signal(int signo, void (*func)(int)))(int);

Returns: previous disposition of signal if OK, SIG ERR otherwise

func can be:

SIG IGN which requests that we ignore the signal signo

SIG DFL which requests that we accept the default action for signal

signo

or the address of a function which should catch or handle a signal

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 52

Signal Examples

$ cc -Wall siguser.c

$./a.out

^Z

$ bg

$ ps | grep a.ou[t]

11106 ttys002 0:00.00 ./a.out

$ kill -USR1 11106

received SIGUSR1

$ kill -USR2 11106

received SIGUSR2

$ kill -INT 11106

$

[2]- Interrupt ./a.out

$

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 53

Program Startup

When a program is execed, the status of all signals is either default or

ignore.

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 54

Program Startup

When a program is execed, the status of all signals is either default or

ignore.

When a process fork(2)s, the child inherits the parent’s signal

dispositions.

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 55

Program Startup

When a program is execed, the status of all signals is either default or

ignore.

When a process fork(2)s, the child inherits the parent’s signal

dispositions.

A limitation of the signal(3) function is that we can only determine the

current disposition of a signal by changing the disposition.

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 56

sigaction(2)

#include <signal.h>

int sigaction(int signo, const struct sigaction *act, struct sigaction *oact);

This function allows us to examine or modify the action associated with a

particular signal.

struct sigaction {

void (*sa_handler)(); /* addr of signal handler, or

SIG_IGN or SIG_DFL */

sigset_t sa_mask; /* additional signals to block */

int sa_flags; /* signal options */

};

signal(3) is (nowadays) commonly implemented via sigaction(2).

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 57

More advanced signal handling via signal sets

int sigemptyset(sigset t *set) – intialize a signal set to be empty

int sigfillset(sigset t *set) – initialize a signal set to contain all

signals

int sigaddset(sigset t *set, int signo)

int sigdelset(sigset t *set, int signo)

int sigismember(sigset t *set, int signo)

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 58

Resetting Signal Handlers

Note: on some systems, invocation of the handler resets the disposition

to SIG DFL!

$ cc -DSLEEP=3 -Wall pending.c

$./a.out

=> Establishing initial signal hander via signal(3).

^\sig_quit: caught SIGQUIT (1), now sleeping

sig_quit: exiting (1)

=> Time for a second interruption.

^\sig_quit: caught SIGQUIT (2), now sleeping

sig_quit: exiting (2)

=> Establishing a resetting signal hander via signal(3).

^\sig_quit_reset: caught SIGQUIT (3), sleeping and resetting.

sig_quit_reset: restored SIGQUIT handler to default.

=> Time for a second interruption.

^\Quit: 3

$

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 59

Signal Queuing

Signals arriving while a handler runs are queued.

$./a.out >/dev/null

^\sig_quit: caught SIGQUIT (1), now sleeping

^\^\^\^\^\^\sig_quit: exiting (1)

sig_quit: caught SIGQUIT (2), now sleeping

^\^\^\^\sig_quit: exiting (2)

sig_quit: caught SIGQUIT (3), now sleeping

^\sig_quit: exiting (3)

sig_quit: caught SIGQUIT (4), now sleeping

sig_quit: exiting (4)

[...]

(Note that ”simultaneously” delivered signals may be ”merged” into one.)

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 60

Signal Queuing

Signals arriving while a handler runs are queued.

Unless they are blocked.

$./a.out

[...]

=> Establishing a resetting signal hander via signal(3).

^\sig_quit_reset: caught SIGQUIT (1), sleeping and resetting.

sig_quit_reset: restored SIGQUIT handler to default.

=> Time for a second interruption.

=> Blocking delivery of SIGQUIT...

=> Now going to sleep for 3 seconds...

^\

=> Checking if any signals are pending...

=> Checking if pending signals might be SIGQUIT...

Pending SIGQUIT found.

=> Unblocking SIGQUIT...

Quit: 3

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 61

Signal Queuing

Multiple identical signals are queued, but you can receive a different

signal while in a signal handler.

$./a.out >/dev/null

^\sig_quit: caught SIGQUIT (1), now sleeping

^\^\^\^\^Csig_int: caught SIGINT (2), returning immediately

sig_quit: exiting (2)

sig_quit: caught SIGQUIT (3), now sleeping

^\^\sig_quit: exiting (3)

sig_quit: caught SIGQUIT (4), now sleeping

sig_quit: exiting (4)

[...]

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 62

Interrupted System Calls

Some system calls can block for long periods of time (or forever). These

include things like:

read(2)s from files that can block (pipes, networks, terminals)

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 63

Interrupted System Calls

Some system calls can block for long periods of time (or forever). These

include things like:

read(2)s from files that can block (pipes, networks, terminals)

write(2) to the same sort of files

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 64

Interrupted System Calls

Some system calls can block for long periods of time (or forever). These

include things like:

read(2)s from files that can block (pipes, networks, terminals)

write(2) to the same sort of files

open(2) of a device that waits until a condition occurs (for example, a

modem)

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 65

Interrupted System Calls

Some system calls can block for long periods of time (or forever). These

include things like:

read(2)s from files that can block (pipes, networks, terminals)

write(2) to the same sort of files

open(2) of a device that waits until a condition occurs (for example, a

modem)

pause(3), which purposefully puts a process to sleep until a signal

occurs

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 66

Interrupted System Calls

Some system calls can block for long periods of time (or forever). These

include things like:

read(2)s from files that can block (pipes, networks, terminals)

write(2) to the same sort of files

open(2) of a device that waits until a condition occurs (for example, a

modem)

pause(3), which purposefully puts a process to sleep until a signal

occurs

certain ioctl(3)s

certain IPC functions

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 67

Interrupted System Calls

Some system calls can block for long periods of time (or forever). These

include things like:

read(2)s from files that can block (pipes, networks, terminals)

write(2) to the same sort of files

open(2) of a device that waits until a condition occurs (for example, a

modem)

pause(3), which purposefully puts a process to sleep until a signal

occurs

certain ioctl(3)s

certain IPC functions

Catching a signal during execution of one of these calls traditionally led

to the process being aborted with an errno return of EINTR.

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 68

Interrupted System Calls

Previously necessary code to handle EINTR:

again:

if ((n = read(fd, buf, BUFFSIZE)) < 0) {

if (errno == EINTR)

goto again; /* just an interrupted system call */

/* handle other errors */

}

Nowadays, many Unix implementations automatically restart certain

system calls.

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 69

Interrupted System Calls

$ cc -Wall eintr.c

$./a.out

^C

read call was interrupted

||

$./a.out

^\a

read call was restarted

|a|

$

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 70

Reentrant functions

An example of calling nonreentrant functions from a signal handler:

$ cc -Wall reentrant.c; ./a.out

in signal handler

in signal handler

in signal handler

no ’root’ found!

$./a.out

in signal handler

return value corrupted: pw_name = root

$./a.out

in signal handler

in signal handler

User jschauma not found!

$./a.out

in signal handler

in signal handler

Memory fault (core dumped)

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 71

Reentrant Functions

If your process is currently handling a signal, what functions are you

allowed to use?

See p. 306 in Stevens for a list.

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 72

Homework

Read:

Controlling Terminals: tty(4), termios(4)

Read, try, play with and understand all examples.

Review the discussions around an issue we discovered in a previous

class:

https://is.gd/x95eFp

https://is.gd/Rqn03R

https://is.gd/GYYE32

(See following slides.)

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 73

An entertaining tangent in code exploration...

$ timeout 60 /bin/sh -c "ls | more"

vs

$ /bin/sh -c "timeout 60 /bin/sh -c \"ls | more\""

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 74

An entertaining tangent in code exploration...

$ timeout 60 /bin/sh -c "ls | more; sleep 60"

$ pstree -hapun
[...]

| | ‘-ksh,10981
| | ‘-sh,12044 -c timeout 60 /bin/sh -c "ls | more; sleep 30"
| | ‘-timeout,12045 60 /bin/sh -c ls | more; sleep 30
| | ‘-sh,12046 -c ls | more; sleep 30
| | ‘-sleep,12049 30

[...]

$ ps x -o pid,ppid,pgid,sid,tpgid,stat,comm | egrep -v "(ssh|ps|egrep)"
PID PPID PGID SESS TPGID STAT COMMAND

7676 7675 7676 7676 7676 Ss+ ksh
10981 10980 10981 10981 12044 Ss ksh
12044 10981 12044 10981 12044 S+ sh
12045 12044 12045 10981 12044 S timeout
12046 12045 12045 10981 12044 S sh
12049 12046 12045 10981 12044 S sleep

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 75

An entertaining tangent in code exploration...

$ /bin/sh -c timeout 60 "/bin/sh -c \"ls | more\""

$ pstree -hapun
[...]

| | ‘-ksh,10981
| | ‘-sh,12434 -c timeout 60 /bin/sh -c "ls | more"
| | ‘-timeout,12435 60 /bin/sh -c ls | more
| | ‘-sh,12436 -c ls | more
| | |-ls,12437
| | ‘-more,12438

[...]

$ ps x -o pid,ppid,pgid,sid,tpgid,stat,comm | egrep -v "(ssh|ps|egrep)"
PID PPID PGID SESS TPGID STAT COMMAND

7676 7675 7676 7676 7676 Ss+ ksh
10981 10980 10981 10981 12434 Ss ksh
12434 10981 12434 10981 12434 S+ sh
12435 12434 12435 10981 12434 S timeout
12436 12435 12435 10981 12434 T sh
12437 12436 12435 10981 12434 T ls
12438 12436 12435 10981 12434 T more

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 76

An entertaining tangent in code exploration...

Use the source, Luke!

coreutils/src/timeout.c

/* Ensure we’re in our own group so all subprocesses can be killed.
Note we don’t just put the child in a separate group as
then we would need to worry about foreground and background groups
and propagating signals between them. */

if (!foreground)
setpgid (0, 0);

[...]

signal (SIGTTIN, SIG_DFL);
signal (SIGTTOU, SIG_DFL);

execvp (argv[0], argv);

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

CS631 - Advanced Programming in the UNIX Environment Slide 77

An entertaining tangent in code exploration...

Use the source, Luke!

util-linux/text-utils/more.c

#define stty(fd,argp) tcsetattr(fd,TCSANOW,argp)

if (!no_tty) {
signal(SIGQUIT, onquit);
signal(SIGINT, end_it);

#ifdef SIGWINCH
signal(SIGWINCH, chgwinsz);

#endif /* SIGWINCH */
if (signal (SIGTSTP, SIG_IGN) == SIG_DFL) {

signal(SIGTSTP, onsusp);
catch_susp++;

}
stty (fileno(stderr), &otty);

Lecture 06: Process Groups, Sessions, Signals October 15, 2018

