CS615 - Aspects of System Administration

DNS; HTTP

Department of Computer Science
Stevens Institute of Technology
Jan Schaumann
jschauma@stevens-tech.edu https://stevens.netmeister.org/615/
Current Events

$10,000 Scholarship opportunity:

"The North American Network Operators’ Group (NANOG), is the professional association for Internet engineering, architecture and operations. Our core focus is on continuous improvement of the data transmission technologies, practices, and facilities that make the Internet function. In an effort to support the next generation of network operators, NANOG has established a scholarship program to assist current undergraduate and graduate-level students pursuing a degree in one of the eligible fields listed below."

https://www.scholarsapply.org/nanog/
Current Events

https://www.timeanddate.com/time/dst/events.html
Falsehoods Programmers Believe About Time:

1. There are always 24 hours in a day.

http://FalsehoodsAboutTime.com
In the beginning...

https://is.gd/DdPNCo
In the beginning...

Host Database
This file should contain the addresses and aliases
for local hosts that share this file.
#
127.0.0.1 localhost localhost.
#
RFC 1918 specifies that these networks are "internal".
10.0.0.0 10.255.255.255
172.16.0.0 172.31.255.255
192.168.0.0 192.168.255.255
10.0.0.1 UCLA-TEST
10.0.0.2 SRI-SPRM
10.0.0.4 UTAH-CS
But then...
The Domain Name System

Computers like numbers.

1001101111110110010110011001111
Computers like numbers.

10011011 11110110 01011001 10011111

155 . 246 . 89 . 159
People like names.

ash.cs.stevens-tech.edu
The Domain Name System
The New Phonebook is here!

https://is.gd/XXp2sC

wget -q -O - https://is.gd/XXp2sC | grep -c "^HOST"
DNS: A distributed database
The domain name space consists of a tree of *domain* names.
DNS: A hierarchical system
The Domain Name Space

The domain name space consists of a tree of *domain* names.

A subtree divides into *zones*.
The Domain Name Space

The domain name space consists of a tree of *domain* names.

A subtree divides into *zones*.

Each node may contain *resource records*.
The Domain Name Space

NS RR ("resource record") names the nameserver authoritative for delegated subzone.

"delegated subzone"

When a system administrator wants to let another administrator manage a part of a zone, the first administrator's nameserver delegates part of the zone to another nameserver.

resource records associated with name

zone of authority, managed by a name server

see also: RFC 1034 4.2: How the database is divided into zones.
Domain Names

ash.cs.stevens-tech.edu

Domain Names are read from right to left and components separated by a “.”.
Domain Names

ash.cs.stevens-tech.edu.

The root is known as “.”, but is usually left out.
Domain Names

ash.cs.stevens-tech.edu.

There is a small number of *top level domains*.
Domain Names

ash.cs.stevens-tech.edu.

There is a number of top level domains.

wget -O - ftp://rs.internic.net/domain/root.zone |
 grep "IN\stab*NS\stab" |
 awk '{print $1}' |
 sort -u |
 wc -l

https://data.iana.org/TLD/tlds-alpha-by-domain.txt
Domain Names

ash.cs.stevens-tech.edu.

Each *domain* can be divided into any number of *sub domains*.
Domain Names

ash.cs.stevens-tech.edu.

Each *domain* can be divided into any number of *sub domains*.
The left-most component of a domain name may be a *hostname*.
Fully Qualified Domain Names

\[\text{ash.cs.stevens-tech.edu.} \]

A *hostname* with a domain name is known as a *FQDN*.
The Original IANA
NIC and Network Solutions

Before the DNS, the Network Information Center (NIC) at Stanford Research Institute (SRI) allocated domain names. IANA (effectively: Jon Postel) assigned, NIC published.

https://www.internic.net

In 1991, this was contracted out to Network Solutions, Inc. (NSI), which held the monopoly on DNS registrations (within .com, .org, .mil, .gov, .edu, and .net) until around 1998.
Registries

IANA manages the root zone (.), arpa.; gTLD registries handle gTLDs, ccTLD registries handle ccTLDs. ICANN accredits domain name registries.

- may function as a Domain Name Registrar
- may delegate Domain Name registration
- control policies of allocations
- can (and do) censor, revoke, change, ... entries (e.g. vb.ly)

The domain name space is a tree; if you control one node, you control all the branches and subtrees.
DNS servers come in two flavors

Authoritative Nameservers

Recursive Nameservers
Hostname resolution

Resolution on a recursive nameserver (aka resolver) involves a number of queries:

```
$ nslookup ash.cs.stevens-tech.edu
Server: 127.0.0.1
Address: 127.0.0.1
Non-authoritative answer:
Name: ash.cs.stevens-tech.edu
Address: 155.246.89.159
```

$
Hostname resolution

Resolution on a *resolver* involves a number of queries:

IP `panix.netmeister.org.62105` > `i.root-servers.net.domain`:
11585 [1au] A? `ash.cs.stevens-tech.edu.` (52)

IP `i.root-servers.net.domain` > `panix.netmeister.org.62105`:
11585- 0/8/8 (494)

IP `panix.netmeister.org.53168` > `a.gtld-servers.net.domain`:
46575 [1au] A? `ash.cs.stevens-tech.edu.` (52)

IP `a.gtld-servers.net.domain` > `panix.netmeister.org.53168`:
46575- 0/6/3 (609)

IP `panix.netmeister.org.41071` > `nrac.stevens-tech.edu.domain`:
24322 [1au] A? `ash.cs.stevens-tech.edu.` (52)

IP `nrac.stevens-tech.edu.domain` > `panix.netmeister.org.41071`:
24322*- 1/2/3 A[|domain]
Hostname resolution

Resolution on a *resolver* involves a number of queries:

```
$ host -t ns .
  . name server I.ROOT-SERVERS.NET.
  . name server D.ROOT-SERVERS.NET.
  . name server C.ROOT-SERVERS.NET.
  . name server M.ROOT-SERVERS.NET.
  . name server F.ROOT-SERVERS.NET.
  . name server A.ROOT-SERVERS.NET.
  . name server E.ROOT-SERVERS.NET.
  . name server L.ROOT-SERVERS.NET.
  . name server H.ROOT-SERVERS.NET.
  . name server J.ROOT-SERVERS.NET.
  . name server B.ROOT-SERVERS.NET.
  . name server G.ROOT-SERVERS.NET.
  . name server K.ROOT-SERVERS.NET.
$```

DNS; HTTP
March 11, 2019
Hostname resolution

Resolution on a *resolver* involves a number of queries:

```
$ dig -t ns edu.
[...]
;; ANSWER SECTION:
edu. 172800 IN NS l.edu-servers.net.
edu. 172800 IN NS f.edu-servers.net.
edu. 172800 IN NS c.edu-servers.net.
edu. 172800 IN NS g.edu-servers.net.
edu. 172800 IN NS a.edu-servers.net.
edu. 172800 IN NS d.edu-servers.net.

;; ADDITIONAL SECTION:
c.edu-servers.net. 36626 IN A 192.26.92.30
d.edu-servers.net. 13274 IN A 192.31.80.30
l.edu-servers.net. 36626 IN A 192.41.162.30
[...]
$
```
Hostname resolution

Resolution on a *resolver* involves a number of queries:

```
$ dig @c.edu-servers.net -t ns stevens.edu.
[...]
;; AUTHORITY SECTION:
stevens.edu. 172800 IN NS nrac.stevens-tech.edu.
stevens.edu. 172800 IN NS sitult.stevens-tech.edu.

;; ADDITIONAL SECTION:
nrac.stevens-tech.edu. 172800 IN A 155.246.1.21
sitult.stevens-tech.edu. 172800 IN A 155.246.1.20
[...]
$ ```
Hostname resolution

DNS; HTTP
Hostname resolution

Resolution on a *resolver* involves a number of queries:

```
$ nslookup ash.cs.stevens-tech.edu
Server: 127.0.0.1
Address: 127.0.0.1

Non-authoritative answer:
Name: ash.cs.stevens-tech.edu
Address: 155.246.89.159
```

$
Hostname resolution
Hostname resolution

$ ftp -o - ftp.internic.net:/domain/db.cache | more
https://www.internic.net/zones/named.root
Operation Global Blackout

https://pastebin.com/XZ3EGsbc
DNS: A distributed system

There are 13 root servers.
DNS: A distributed system

There are 13 root servers.

Except... there are more.
DNS: A distributed system

There are 13 root authorities.
DNS: A distributed system

There are 13 root server addresses.
DNS: A distributed system

There are hundreds of root servers.
DNS: A distributed system

See e.g.: https://e.root-servers.org/
Operation Global Blackout

@anonops

GlobalBlackOut is another Fake Operation. No intention of #Anonymous to cut Internet.

50+ RETWEETS 27 FAVORITES

8:02 AM - 21 Feb 12 via Twitter for BlackBerry® - Embed this Tweet

Reply Retweet Favorite
DNS: A distributed database
DNS Resource Records

More than just A and AAAA:

- **CAA** – certificate authority authorization
- **CNAME** – the canonical name for an alias
- **MX** – mail exchange
- **NS** – an authoritative name server
- **SOA** – marks the start of a zone of authority
- **SRV** – service locator (e.g. for kerberos)
- **PTR** – a domain name pointer
- **TXT** text strings
- ...

DNS; HTTP
March 11, 2019
DNS Resource Records

You’ve all seen PTR records:

$ host ash.cs.stevens-tech.edu
ash.cs.stevens-tech.edu has address 155.246.89.159
ash.cs.stevens-tech.edu mail is handled by 0 guinness.cs.stevens-tech.edu.
$ host 155.246.89.159
159.89.246.155.in-addr.arpa domain name pointer ash.cs.stevens-tech.edu.
$

Stevens doesn’t have write access to the in-addr.arpa domain. How does this work?
Creative uses of DNS Resource Records

- identifying sources of SPAM (via e.g. an RBL)
- detect email spoofing (via e.g. SPF)
- find out if the internet is on fire:

  ```
  dig +short txt istheinternetonfire.com
  ```
- find ASN numbers by IP addresses:

  ```
  dig +short 159.89.246.155.origin.asn.cymru.com TXT
  ```
- check a resolver’s source port randomization (to help mitigate DNS Cache Poisoning attacks):

  ```
  dig +short porttest.dns-oarc.net TXT
  ```
- using DNS to publish SSH key fingerprints (RFC4255, ssh_config(5) VerifyHostKeyDNS; for best results combine with DNSSEC)
DNS Implications

- Information from the DNS is used for authentication, authorization, and as a source of truth.
- DNSSEC is not widely deployed and carries implementation challenges.
- DNS traffic is ubiquitous, may escape ACLs and restrictions.
- Faulty information can lead to unexpected and difficult to troubleshoot failures.
- TTLs and caches can prolong outages as you wait for propagation of changes.
- If you pwn the DNS, you pwn the entire target (hey, let's attack the registrar!)
- Any time you outsource something, you lose control; any time you own solving a problem, you assert that you know how to solve this better than others.
Hooray!

5 Minute Break
Hypertext Transfer Protocol

Today’s Universal Internet Pipe
HTTP: Hypertext

W W W

“The World Wide Web is the only thing I know of whose shortened form takes three times longer to say than what it’s short for.” – Douglas Adams
HTTP: Hypertext

CERN DD/OC
Information Management: A Proposal
March 1989

Abstract

This proposal concerns the management of general information about accelerators and experiments at CERN. It discusses the problems of loss of information about complex evolving systems and derives a solution based on a distributed hypertext system.

Keywords: Hypertext, Computer conferencing, Document retrieval, Information management, Project control

https://is.gd/JnZaN6
HTTP

Hypertext Transfer Protocol

RFC2616
HTTP

HTTP is a request/response protocol.
The Hypertext Transfer Protocol

HTTP is a request/response protocol:

1. client sends a request to the server
2. server responds
The Hypertext Transfer Protocol

HTTP is a request/response protocol:

1. client sends a request to the server
 - request method
 - URI
 - protocol version
 - request modifiers
 - client information

2. server responds
HTTP: A client request

$ telnet www.google.com 80
Trying 173.194.75.147...
Connected to www.google.com.
Escape character is '^[']'.
GET / HTTP/1.0
The Hypertext Transfer Protocol

HTTP is a request/response protocol:

1. client sends a request to the server
 - request method
 - URI
 - protocol version
 - request modifiers
 - client information

2. server responds
 - status line (including success or error code)
 - server information
 - entity metainformation
 - content
HTTP: a server response

HTTP/1.0 200 OK
Date: Sun, 31 Mar 2013 01:54:40 GMT
Set-Cookie: PREF=ID=c5eb56d629b347cc:FF=0:TM=1364694880:LM=1364694880: S=sIdRFdxV9YvtQ01G; expires=Tue, 31-Mar-2015 01:54:40 GMT; path=/; domain=.google.com
Set-Cookie: NID=67=hvBn0ob2NoZW4haTJVfajbcyn_jips501KRe-8nawzdCZ6AukNR_s8CNHD6ZA-Z2721nA3TpLrNXt-2zyIui23j4kdsdF8Gg--PmGsMOJ3Jv5frEzQG1e1HJv92HL-w2; expires=Mon, 30-Sep-2013 01:54:40 GMT; path=/; domain=.google.com; HttpOnly
Server: gws

<!doctype html><html itemscope="itemscope" itemtype="http://schema.org/WebPage">
<head><meta content="Search the..."
The Hypertext Transfer Protocol

Server status codes:

- **1xx** – Informational; Request received, continuing process
- **2xx** – Success; The action was successfully received, understood, and accepted
- **3xx** – Redirection; Further action must be taken in order to complete the request
- **4xx** – Client Error; The request contains bad syntax or cannot be fulfilled
- **5xx** – Server Error; The server failed to fulfill an apparently valid request
HTTP: A client request

$ telnet www.cs.stevens.edu 80
Trying 155.246.89.84...
Connected to www.cs.stevens-tech.edu.
Escape character is '\']'.
GET / HTTP/1.0

HTTP/1.1 301 Moved Permanently
Date: Mon, 05 Mar 2018 20:41:06 GMT
Server: Apache
Location: https://www.cs.stevens.edu/
Vary: Accept-Encoding
Content-Length: 235
Connection: close
Content-Type: text/html; charset=iso-8859-1
HTTP: A client request

```bash
$ printf "HEAD / HTTP/1.1\r\nHost: www.cs.stevens.edu\r\n\r\n" |

HTTP/1.1 302 Found
Date: Mon, 05 Mar 2018 20:53:38 GMT
Server: Apache
Location: https://www.stevens.edu/ses/cs
Vary: Accept-Encoding
Content-Type: text/html; charset=iso-8859-1
```
HTTP: A client request

$ printf "HEAD /ses/cs HTTP/1.1\nHost: www.stevens.edu\n\n" | openssl s_client -quiet -ign_eof -connect www.stevens.edu:443 2>/dev/null

HTTP/1.1 301 Moved Permanently
Date: Mon, 05 Mar 2018 20:54:51 GMT
Content-Type: text/html; charset=UTF-8
Location: https://www.stevens.edu/schaefer-school-engineering-science/departments/computer-science
HTTP: A client request

$ printf "HEAD /schaefer-school-engineering-science/departments/computer-science HTTP/1.1\r\nHost: www.stevens.edu\n\r\nopenssl s_client -quiet -ign_eof -connect www.stevens.edu:443 2>/dev/null

HTTP/1.1 200 OK
Date: Mon, 05 Mar 2018 20:56:37 GMT
Content-Type: text/html; charset=utf-8
Connection: keep-alive
Expires: Sun, 19 Nov 1978 05:00:00 GMT
Last-Modified: Mon, 05 Mar 2018 16:44:39 GMT
[...]
HTTP: A client request

DNS; HTTP

March 11, 2019
HTTP - more than just text

HTTP is a *Transfer Protocol* – serving *data*, not any specific text format.

- **Accept-Encoding** client header can specify different formats such as gzip or deflate for compression etc. communications, etc.
- **corresponding server headers:** **Content-Type** and **Content-Encoding**
HTTP - more than just static data

HTTP is a *Transfer Protocol* – what is transferred need not be static; resources may generate different data to return based on many variables.

- CGI – resource is *executed*, needs to generate appropriate response headers
- server-side scripting (ASP, PHP, Perl, ...)
- client-side scripting (JavaScript/ECMAScript/JScript, ...)
- applications based on HTTP, using:
 - AJAX
 - RESTful services
 - JSON, XML, YAML to represent state and abstract information
HTTP Proxy Servers

- HTTP traffic usually is very asymmetric
- A lot of the content is static
- Network ACLs may restrict traffic flow
HTTP overload

Ways to mitigate HTTP overload:

- DNS round-robin to many web servers
- load balancing
- web cache / accelerators (reverse proxies)
- content delivery networks

These solutions depend on the location within the network and the scale of the environment.
Load Balancing

Diagram:
- Client PCs connect to the Internet.
- The Internet forwards requests to the Load Balancer.
- The Load Balancer distributes the requests to the Servers.

Key Points:
- DNS; HTTP
- March 11, 2019
Load Balancing: Inbound

Client PC 172.10.12.24

Local Router 192.168.0.1/24

Load Balancer 192.168.0.10/24

VIP: 192.168.0.200:80

Layer 2 Switch

src: 192.168.0.10
dst: 192.168.0.102

Real Servers

192.168.0.100

192.168.0.101

192.168.0.102

src: 172.10.12.24
dst: 192.168.0.200
Load Balancing: Outbound

Client PC 172.10.12.24

Local Router 192.168.0.1/24

Load Balancer 192.168.0.10/24

VIP: 192.168.0.200:80

Layer 2 Switch

src: 192.168.0.200
dst: 172.10.12.24

src: 192.168.0.102
dst: 192.168.0.10

192.168.0.100

192.168.0.101

192.168.0.102

Real Servers
Load Balancing: Direct Server Return

1. Client (1.1.1.1) connects to Internet.
2. Request sent to Load Balancer (VIP: 2.2.2.2, VIP MAC: AAAA).
3. Load Balancer forwards request to Server (Loopback IP: 2.2.2.2, NIC IP: 3.3.3.3, NIC MAC: BBBB).
4. Server responds to Load Balancer (src: 1.1.1.1, dst: 2.2.2.2).
5. Load Balancer sends response back to Client (src: 1.1.1.1, dst: 2.2.2.2).
Content Delivery Networks
Content Delivery Networks

- cache content in strategic locations
- determine location to serve from via geomapping of IP addresses (beware IPv6 aggregation!)
- often uses a separate domain to distinguish small objects/large objects or dynamic content/static content
- either out-sourced or in-house (if your organization is a Tier-1 or Tier-2 peering partner)
- request routing happens via Global Server Load Balancing, DNS-based request routing, anycasting etc.
- provides vast amounts of interesting data about your clients (see https://www.akamai.com/stateoftheinternet/)
CDN Implications

- your CDN sees all your traffic
- your CDN controls your TLS certificate keys
- your CDN is a multi-tenant environment
- your CDN may impose restrictions on your clients
- separation of cache-able content may require multiple (second-level) domains
HTTP and DNS

Both HTTP and DNS are trivial to set up.

Both HTTP and DNS are not trivial to get right.
Reading

HTTP etc.:

- RFC 2616, 2818, 3875
- https://httpd.apache.org/docs/
- https://www.w3.org/Protocols/
- REST: https://is.gd/leSvGa
- CDNs: https://is.gd/R5DoxA
 - https://www.edgecast.com/
 - https://aws.amazon.com/cloudfront/
 - https://www.akamai.com/
 - https://www.limelight.com/
 - ...