CS615 - System Administration

DNS; HTTP

Department of Computer Science
Stevens Institute of Technology
Jan Schaumann
jschauma@stevens-tech.edu
https://stevens.netmeister.org/615/
Current Events

https://www.timeanddate.com/time/dst/events.html
Falsehoods Programmers Believe About Time:

1. There are always 24 hours in a day.
2. Months have either 30 or 31 days.
3. Years have 365 days.
4. February is always 28 days long.

http://FalsehoodsAboutTime.com
https://azure.microsoft.com/en-us/blog/is-your-code-ready-for-the-leap-year/
In the beginning...

https://is.gd/DdPNCo
In the beginning...

Host Database
This file should contain the addresses and aliases
for local hosts that share this file.
#
127.0.0.1 localhost localhost.
#
RFC 1918 specifies that these networks are "internal".
10.0.0.0 10.255.255.255
172.16.0.0 172.31.255.255
192.168.0.0 192.168.255.255
10.0.0.1 UCLA-TEST
10.0.0.2 SRI-SPRM
10.0.0.4 UTAH-CS
The Domain Name System

Computers like numbers.

10011011111101100101100110011111
The Domain Name System

Computers like numbers.

10011011 11110110 01011001 10011111

155 . 246 . 89 . 159
The Domain Name System

People like names.

ash.cs.stevens-tech.edu
The Domain Name System
The New Phonebook is here!

https://is.gd/XXp2sC

wget -q -o - https://is.gd/XXp2sC | grep -c "^HOST"
DNS: A distributed database
The Domain Name Space

The domain name space consists of a tree of \textit{domain} names.
DNS: A hierarchical system
The Domain Name Space

The domain name space consists of a tree of *domain* names.

A subtree divides into *zones*.
The domain name space consists of a tree of domain names.

A subtree divides into zones.

Each node may contain resource records.
The Domain Name Space

NS RR ("resource record") names the nameserver authoritative for delegated subzone

"delegated subzone" When a system administrator wants to let another administrator manage a part of a zone, the first administrator's nameserver delegates part of the zone to another nameserver

resource records associated with name

zone of authority, managed by a name server

see also: RFC 1034 4.2: How the database is divided into zones.
Domain Names

ash.cs.stevens-tech.edu

Domain Names are read from right to left and components separated by a “.”.
Domain Names

ash.cs.stevens-tech.edu.

The *root* is known as “.”, but is usually left out.
Domain Names

ash.cs.stevens-tech.edu.

There is a small number of *top level domains*.
Domain Names

There is a number of *top level domains*.

```
wget -O - ftp://rs.internic.net/domain/root.zone | \
    grep "IN<tab>*NS<tab>" | awk '{print $1}' | sort -u | wc -l
```

https://data.iana.org/TLD/tlds-alpha-by-domain.txt
https://en.wikipedia.org/wiki/List_of_Internet_top-level_domains
Domain Names

ash.cs.stevens-tech.edu.

Each *domain* can be divided into any number of *sub domains*.
Domain Names

ash.cs.stevens-tech.edu.

Each *domain* can be divided into any number of *sub domains*.
Domain Names

ash.cs.stevens-tech.edu.

The left-most component of a domain name may be a hostname.
Fully Qualified Domain Names

ash.cs.stevens-tech.edu.

A *hostname* with a domain name is known as a *FQDN*.
The Original IANA
Before the DNS, the Network Information Center (NIC) at Stanford Research Institute (SRI) allocated domain names. IANA (effectively: Jon Postel) assigned, NIC published.

https://www.internic.net

In 1991, this was contracted out to Network Solutions, Inc. (NSI), which held the monopoly on DNS registrations (within .com, .org, .mil, .gov, .edu, and .net) until around 1998.
Registries

IANA manages the root zone (.), arpa.; gTLD registries handle gTLDs, ccTLD registries handle ccTLDs. ICANN accredits *domain name registries*.

Registries

- may function as a Domain Name Registrar
- may delegate Domain Name registration
- control policies of allocations
- can (and do) censor, revoke, change, ... entries (e.g. vb.ly)

The domain name space is a tree; if you control one node, you control all the branches and subtrees.
DNS servers come in two flavors

- Authoritative Nameservers
- Recursive Nameservers
Hostname resolution

Resolution on a recursive nameserver (aka *resolver*) involves a number of queries:

```
$ nslookup ash.cs.stevens-tech.edu
Server: 127.0.0.1
Address: 127.0.0.1#53

Non-authoritative answer:
Name: ash.cs.stevens-tech.edu
Address: 155.246.89.159
```

$
Hostname resolution

Resolution on a *resolver* involves a number of queries:

IP `panix.netmeister.org.62105` > `i.root-servers.net.domain`:
 11585 [1au] A? `ash.cs.stevens-tech.edu` (52)
IP `i.root-servers.net.domain` > `panix.netmeister.org.62105`:
 11585- 0/8/8 (494)
IP `panix.netmeister.org.53168` > `a.gtld-servers.net.domain`:
 46575 [1au] A? `ash.cs.stevens-tech.edu` (52)
IP `a.gtld-servers.net.domain` > `panix.netmeister.org.53168`:
 46575- 0/6/3 (609)
IP `panix.netmeister.org.41071` > `nrac.stevens-tech.edu.domain`:
 24322 [1au] A? `ash.cs.stevens-tech.edu` (52)
IP `nrac.stevens-tech.edu.domain` > `panix.netmeister.org.41071`:
 24322*- 1/2/3 A[domain]
Hostname resolution

Resolution on a *resolver* involves a number of queries:

```
$ host -t ns .
  name server I.ROOT-SERVERS.NET.
  name server D.ROOT-SERVERS.NET.
  name server C.ROOT-SERVERS.NET.
  name server M.ROOT-SERVERS.NET.
  name server F.ROOT-SERVERS.NET.
  name server A.ROOT-SERVERS.NET.
  name server E.ROOT-SERVERS.NET.
  name server L.ROOT-SERVERS.NET.
  name server H.ROOT-SERVERS.NET.
  name server J.ROOT-SERVERS.NET.
  name server B.ROOT-SERVERS.NET.
  name server G.ROOT-SERVERS.NET.
  name server K.ROOT-SERVERS.NET.
$
```
Hostname resolution

Resolution on a *resolver* involves a number of queries:

```
$ dig -t ns edu.
[...]
;; ANSWER SECTION:
edu.  172800 IN  NS  l.edu-servers.net.
edu.  172800 IN  NS  f.edu-servers.net.
edu.  172800 IN  NS  c.edu-servers.net.
edu.  172800 IN  NS  g.edu-servers.net.
edu.  172800 IN  NS  a.edu-servers.net.
edu.  172800 IN  NS  d.edu-servers.net.

;; ADDITIONAL SECTION:
c.edu-servers.net.  36626 IN  A   192.26.92.30
d.edu-servers.net.  13274 IN  A   192.31.80.30
l.edu-servers.net.  36626 IN  A   192.41.162.30
[...]
$```

DNS; HTTP

March 9, 2020
Hostname resolution

Resolution on a *resolver* involves a number of queries:

```
$ dig @c.edu-servers.net -t ns stevens.edu.
[...]
;; AUTHORITY SECTION:
stevens.edu. 172800 IN NS nrac.stevens-tech.edu.
stevens.edu. 172800 IN NS sitult.stevens-tech.edu.

;; ADDITIONAL SECTION:
nrac.stevens-tech.edu. 172800 IN A 155.246.1.21
sitult.stevens-tech.edu. 172800 IN A 155.246.1.20
[...]
$
```
Hostname resolution

DNS; HTTP March 9, 2020
Hostname resolution

Resolution on a *resolver* involves a number of queries:

$ nslookup ash.cs.stevens-tech.edu$
Server: 127.0.0.1
Address: 127.0.0.1

Non-authoritative answer:
Name: ash.cs.stevens-tech.edu
Address: 155.246.89.159

$
Hostname resolution
Hostname resolution

$ ftp -o - ftp.internic.net:/domain/db.cache | more
https://www.internic.net/zones/named.root
Operation Global Blackout

https://pastebin.com/XZ3EGsbc
DNS: A distributed system

There are 13 root servers.
DNS: A distributed system

There are 13 root servers.

Except... there are more.
DNS: A distributed system

There are 13 root authorities.
DNS: A distributed system

There are 13 root server addresses.
DNS: A distributed system

There are hundreds of root servers.
DNS: A distributed system

See e.g.: https://e.root-servers.org/
Operation Global Blackout

AnonOps
@anonops

GlobalBlackOut is another Fake Operation. No intention of #Anonymous to cut Internet.

50+ RETWEETS  27 FAVORITES

8:02 AM - 21 Feb 12 via Twitter for BlackBerry® · Embed this Tweet

Reply  Retweet  Favorite
DNS Resource Records

More than just A and AAAA:

- **CAA** – certificate authority authorization
- **CNAME** – the canonical name for an alias
- **MX** – mail exchange
- **NS** – an authoritative name server
- **SOA** – marks the start of a zone of authority
- **SRV** – service locator (e.g. for kerberos)
- **PTR** – a domain name pointer
- **TXT** text strings
- ...

DNS; HTTP
March 9, 2020
DNS Resource Records

You’ve all seen PTR records:

$ host ash.cs.stevens-tech.edu
ash.cs.stevens-tech.edu has address 155.246.89.159
ash.cs.stevens-tech.edu mail is handled by 0 guinness.cs.stevens-tech.edu.
$ host 155.246.89.159
159.89.246.155.in-addr.arpa domain name pointer ash.cs.stevens-tech.edu.
$

Stevens doesn’t have write access to the in-addr.arpa domain. How does this work?
DNS Security

$ tcpdump -t -n -r tcpdump.out udp port 53
reading from file tcpdump.out, link-type EN10MB (Ethernet)
IP 172.16.0.23.53 > 10.183.114.37.53383: 20378 5/0/0
CNAME atsv2-fp-shed.wg1.b.yahoo.com., A 72.30.35.9, A 72.30.35.10,

How do we know 172.16.0.23 didn’t lie to us?
How do we protect a MitM from observing this traffic?
DNS Security

Blue Team: DNS over HTTPs

https://blog.mozilla.org/netpolicy/2020/02/25/the-facts-mozillas-dns-over-https-doh
https://hacks.mozilla.org/2018/05/a-cartoon-intro-to-dns-over-https/
https://www.zdnet.com/article/dns-over-https-causes-more-problems-than-it-solves-experts

Black Team: DNS over TLS

https://developers.cloudflare.com/1.1.1.1/dns-over-tls/
https://developers.google.com/speed/public-dns/docs/dns-over-tls
Creative uses of DNS Resource Records

- identifying sources of SPAM (via e.g. an RBL)
- detect email spoofing (via e.g. SPF)
- find out if the internet is on fire:
  ```
dig +short txt istheinternetonfire.com
  ```
- find ASN numbers by IP addresses:
  ```
dig +short 159.89.246.155.origin.asn.cymru.com TXT
  ```
- check a resolver’s source port randomization (to help mitigate DNS Cache Poisoning attacks):
  ```
dig +short porttest.dns-oarc.net TXT
  ```
- using DNS to publish SSH key fingerprints (RFC4255, ssh_config(5)
  ```
VerifyHostKeyDNS; for best results combine with DNSSEC)
```
DNS Implications

- Information from the DNS is used for authentication, authorization, and as a source of truth.
- DNSSEC is not widely deployed and carries implementation challenges.
- DNS traffic is ubiquitous, may escape ACLs and restrictions.
- Faulty information can lead to unexpected and difficult to troubleshoot failures.
- TTLs and caches can prolong outages as you wait for propagation of changes.
- If you pwn the DNS, you pwn the entire target (hey, let’s attack the registrar!)
- Any time you outsource something, you lose control; any time you own solving a problem, you assert that you know how to solve this better than others.
Hooray!

5 Minute Break
Hypertext Transfer Protocol

Today’s Universal Internet Pipe
HTTP: Hypertext

W W W

“The World Wide Web is the only thing I know of whose shortened form takes three times longer to say than what it’s short for.” – Douglas Adams
HTTP: Hypertext

This proposal concerns the management of general information about accelerators and experiments at CERN. It discusses the problems of loss of information about complex evolving systems and derives a solution based on a distributed hypertext system.

Keywords: Hypertext, Computer conferencing, Document retrieval, Information management, Project control

https://is.gd/JnZaN6
Hypertext Transfer Protocol

RFC2616
HTTP is a request/response protocol.
The Hypertext Transfer Protocol

HTTP is a request/response protocol:

1. client sends a request to the server
2. server responds
The Hypertext Transfer Protocol

HTTP is a request/response protocol:

1. client sends a request to the server
   - request method
   - URI
   - protocol version
   - request modifiers
   - client information

2. server responds
HTTP: A client request

$ telnet www.google.com 80
Trying 173.194.75.147...
Connected to www.google.com.
Escape character is '^[].'
GET / HTTP/1.0
The Hypertext Transfer Protocol

HTTP is a request/response protocol:

1. client sends a request to the server
   - request method
   - URI
   - protocol version
   - request modifiers
   - client information

2. server responds
   - status line (including success or error code)
   - server information
   - entity metainformation
   - content
HTTP: a server response

HTTP/1.0 200 OK
Date: Mon, 09 Mar 2020 14:15:41 GMT
Set-Cookie: 1P_JAR=2020-03-09-14; expires=Wed, 08-Apr-2020 14:15:41 GMT;
               path=/; domain=.google.com; Secure
Content-Type: text/html; charset=ISO-8859-1
Server: gws

<!doctype html><html itemscope="itemscope" itemtype="http://schema.org/WebPage"><head><meta content="Search the..."
The Hypertext Transfer Protocol

Server status codes:

1xx – Informational; Request received, continuing process

2xx – Success; The action was successfully received, understood, and accepted

3xx – Redirection; Further action must be taken in order to complete the request

4xx – Client Error; The request contains bad syntax or cannot be fulfilled

5xx – Server Error; The server failed to fulfill an apparently valid request
HTTP: A client request

$ telnet www.cs.stevens.edu 80
Trying 155.246.56.11...
Connected to www.cs.stevens-tech.edu.
Escape character is '}'.
GET / HTTP/1.0

HTTP/1.1 301 Moved Permanently
Date: Mon, 09 Mar 2020 14:18:12 GMT
Server: Apache
Location: https://www.cs.stevens.edu/
Content-Length: 235
Connection: close
Content-Type: text/html; charset=iso-8859-1
HTTP: A client request

$ printf "HEAD / HTTP/1.1\r\nHost: www.cs.stevens.edu\r\n\r\n" | openssl s_client -quiet -ign_eof -connect www.cs.stevens.edu:443 2>/dev/null

HTTP/1.1 302 Found
Date: Mon, 05 Mar 2018 20:53:38 GMT
Server: Apache
Location: https://www.stevens.edu/ses/cs
Vary: Accept-Encoding
Content-Type: text/html; charset=iso-8859-1
HTTP: A client request

```bash
$ printf "HEAD /ses/cs HTTP/1.1\nHost: www.stevens.edu\n\n" | openssl s_client -quiet -ign_eof -connect www.stevens.edu:443 2>/dev/null

HTTP/1.1 200 OK
Date: Mon, 09 Mar 2020 14:26:48 GMT
Content-Type: text/html; charset=utf-8
Connection: keep-alive
Set-Cookie: __cfduid=d6186e98e40e13f81b13ff7edac3d15af1583764008;
 expires=Wed, 08-Apr-20 14:26:48 GMT; path=/; domain=.stevens.edu; HttpOnly; SameSite=Lax
X-Drupal-Cache: HIT
X-Generator: Drupal 7 (http://drupal.org)
Last-Modified: Mon, 09 Mar 2020 09:00:07 GMT
Expires: Sun, 19 Nov 1978 05:00:00 GMT
Via: varnish
Server: cloudflare
[...]```
HTTP: A client request

DNS; HTTP
HTTP - more than just text

HTTP is a *Transfer Protocol* – serving *data*, not any specific text format.

- Accept-Encoding client header can specify different formats such as gzip or deflate for compression etc. communications, etc.

- corresponding server headers: Content-Type and Content-Encoding
HTTP Evolution

- invented around 1989
- 1991: HTTP 0.9
- 1996: HTTP 1.0 (RFC1945)
- 1997: HTTP 1.1 (RFC2068)
- 1999: HTTP 1.1 updates (RFC2616)
- 2012: QUIC (implemented; to become HTTP/3)
- 2015: HTTP/2 (RFC7540)
- 2018: HTTP/3 (IETF Draft)
HTTP/2

Red Team link: HTTP/2 protocol vulnerabilities
https://www.imperva.com/docs/Imperva_HII_HTTP2.pdf
HTTP - more than just static data

HTTP is a *Transfer Protocol* – what is transferred need not be static; resources may generate different data to return based on many variables.

- CGI – resource is *executed*, needs to generate appropriate response headers
- server-side scripting (ASP, PHP, Perl, ...)
- client-side scripting (JavaScript/ECMAScript/JScript,...)
- applications based on HTTP, using:
 - AJAX
 - RESTful services
 - JSON, XML, YAML to represent state and abstract information
HTTP Proxy Servers

- HTTP traffic usually is very asymmetric
- a lot of the content is static
- network ACLs may restrict traffic flow

![Diagram of HTTP proxy servers](image)
HTTP Overload

Ways to mitigate HTTP overload:

- DNS round-robin to many web servers
- Load balancing
- Web cache / accelerators (reverse proxies)
- Content delivery networks

These solutions depend on the location within the network and the scale of the environment.
Load Balancing

Green Team Mission: nginx HTTP Load Balancing
https://docs.nginx.com/nginx/admin-guide/load-balancer/http-load-balancer/
Load Balancing: Inbound
Load Balancing: Outbound

Client PC 172.10.12.24

Local Router 192.168.0.1/24

Load Balancer 192.168.0.10/24

VIP: 192.168.0.200:80

Layer 2 Switch

src: 192.168.0.102
dst: 192.168.0.10

192.168.0.100

192.168.0.101

192.168.0.102

Real Servers

src: 192.168.0.200
dst: 172.10.12.24

DNS; HTTP

March 9, 2020
Load Balancing: Direct Server Return

1. Client (1.1.1.1) sends a request to the Load Balancer (VIP: 2.2.2.2, MAC: AAAA).
2. The Load Balancer directs the request to the Server (NIC IP: 3.3.3.3, MAC: BBBB, Loopback IP: 2.2.2.2) with the source IP 1.1.1.1 and destination IP 2.2.2.2.
Content Delivery Networks
Content Delivery Networks

- cache content in strategic locations
- determine location to serve from via geomapping of IP addresses (beware IPv6 aggregation!)
- often uses a separate domain to distinguish small objects/large objects or dynamic content/static content
- either out-sourced or in-house (if your organization is a Tier-1 or Tier-2 peering partner)
- request routing happens via Global Server Load Balancing, DNS-based request routing, anycasting etc.
- provides vast amounts of interesting data about your clients (see https://www.akamai.com/stateoftheinternet/)
CDN Implications

- your CDN sees all your traffic
- your CDN controls your TLS certificate keys
- your CDN is a multi-tenant environment
- your CDN may impose restrictions on your clients
- separation of cache-able content may require multiple (second-level) domains
HTTP and DNS

Both HTTP and DNS are trivial to set up.

Both HTTP and DNS are not trivial to get right.
HW4: Monitoring HTTP and DNS traffic

https://stevens.netmeister.org/615/s20-hw4.html
Reading

HTTP etc.:

- RFC 2616, 2818, 3875
- https://httpd.apache.org/docs/
- https://www.w3.org/Protocols/
- REST: https://is.gd/leSvGa
- CDNs: https://is.gd/R5DoxA
 - https://www.edgecast.com/
 - https://aws.amazon.com/cloudfront/
 - https://www.akamai.com/
 - https://www.limelight.com/
 - ...