CS615 - Aspects of System Administration

Networking II

Department of Computer Science
Stevens Institute of Technology
Jan Schaumann
jschauma@stevens.edu
http://stevens.netmeister.org/615/
Get your instruments and play along!

Start a FreeBSD instance:
ami-03b0f822e17669866
HW1 Comments

- provide more details in your README
- learn to format your README in a readable manner
- if you run into problems, ask on the mailing list
- do not print any output that was not requested
- avoid useless comments
- make no assumptions about the directory from which your program will be invoked
HW1 Comments

- do not hardcode information that is specific to your own account
- do not hardcode a single AMI; you need to be able to support multiple availability zones
- terminate the instance after your program completes (on success or error)
- do not specify `-i` to `ssh(1)`
- use `aws ec2 wait` instead of loop-waiting yourself
HW1 Comments: avoid waterfall code
Writing shell scripts is not very different from writing programs in other languages.

- use \texttt{getopt(1)} to parse command-line arguments
- use functions
- check commands and functions for return values

Some useful links:

- \url{https://www.netmeister.org/blog/writing-shell-scripts.html}
- \url{https://github.com/koalaman/shellcheck}
- \url{https://google.github.io/styleguide/shell.xml}
Layer 1: Repeater Hub

Half-duplex, cheap, obsolete.
Layer 2: Network Switch

MAC bridge, full-duplex, segmentation, CIDR, STP

https://is.gd/HPhuRG
Layer 3: Router

connect networks, forward packets, routing tables, BGP
A simple example

$ telnet www.yahoo.com 80
A simple example

$ telnet www.yahoo.com 80
Trying 98.138.219.232...
Connected to atsv2-fp-shed.wg1.b.yahoo.com.
Escape character is '^[].'
HEAD / HTTP/1.0
A simple example

$ telnet www.yahoo.com 80
Trying 98.138.219.232...
Connected to atsv2-fp-shed.wg1.b.yahoo.com.
Escape character is '^['.
HEAD / HTTP/1.0

HTTP/1.0 200 OK
Date: Mon, 04 Mar 2019 17:41:59 GMT
Via: http/1.1 media-router-fp1010.prod.media.ne1.yahoo.com
Server: ATS
[...]
A simple example

What exactly happens?
A simple example

What exactly happens?

- local host connects to remote host
- sends command
- receives data
A simple example

How exactly do we connect to the remote host?

- look up hostname
- open connection to IP address
A simple example

How exactly do we look up a hostname?
A simple example

```
$ ktrace -i telnet www.yahoo.com 80
Trying 72.30.35.9...
Connected to atsv2-fp-shed.wg1.b.yahoo.com.
Escape character is '^[]'.
HEAD / HTTP/1.0

[...]
$ kdump >trace
```
...open a few files...

[...]
735 ktrace RET execve -1 errno 2 No such file or directory
735 ktrace CALL execve(0xbfbf8e7e0,0xbfbf8ed00,0xbfbf8ed10)
735 ktrace NAMI "/usr/bin/telnet"
735 ktrace NAMI "/libexec/ld-elf.so.1"
735 telnet RET execve JUSTRETURN

[...]
735 telnet CALL open(0x80066edc5,0x100000<O_RDONLY|O_CLOEXEC>)
735 telnet NAMI "/etc/nsswitch.conf"
735 telnet RET open 3

[...]
735 telnet CALL open(0x800671afd,0x100000<O_RDONLY|O_CLOEXEC>)
735 telnet NAMI "/etc/hosts"
735 telnet RET open 3

[...]
735 telnet CALL open(0x80066e6b5,0x100000<O_RDONLY|O_CLOEXEC>)
735 telnet NAMI "/etc/resolv.conf"
735 telnet RET open 3

[...]
735 telnet CALL read(0x3,0x800c3be40,0x8000)
"# Generated by resolvconf
 search ec2.internal
 nameserver 172.16.0.23
... query a DNS server ...

[...] 735 telnet CALL socket(PF_INET,0x10000002<SOCK_DGRAM|SOCK_CLOEXEC>,IPPROTO_IP)
735 telnet RET socket 3
735 telnet CALL connect(0x3,0x800a43914,0x10)
735 telnet STRU struct sockaddr { AF_INET, 172.16.0.23:53 }
735 telnet RET connect 0
735 telnet CALL sendto(0x3,0x800c96400,0x1f,0,0,0)
735 telnet GIO fd 3 wrote 31 bytes
 0x0000 e614 0100 0001 0000 0000 0000 0377 e777 |............www|
 0x0010 0579 6168 6f6f 0363 6f6d 0000 0100 01 |.yahoo.com.....|

[...]
735 telnet CALL recvfrom(0x3,0x800c71e00,0x10000,0,0x7fffffffd640,0x7fffffffd22)
735 telnet GIO fd 3 read 97 bytes
 0x0000 e614 8180 0001 0003 0000 0000 0377 7777 |............www|
 0x0010 0579 6168 6f6f 0363 6f6d 0000 0100 01c0 |.yahoo.com.....|
 0x0020 0c00 0500 0100 0000 3c00 160d 6174 7376 |.........<...atsv|
 0x0030 322d 6670 2d73 6865 6403 7767 3101 62c0 |2-fp-shed.wg 1.b.|
 0x0040 10c0 2b00 0100 0100 0000 3c00 0448 1e23 |..+.........<..H.#|
 0x0050 09c0 2b00 0100 0100 0000 3c00 0448 1e23 |..+.........<..H.#|
 0x0060 0a |..|

[...]

Networking II
March 4, 2019
A simple example

How exactly do we look up a hostname?

- look up various local files
- open a connection to a DNS server’s IP
- ask DNS server to resolve hostname
- get back IP

And then?
...communicate with the remote host...

```
735 telnet  GIO  fd 1 wrote 21 bytes
 "Trying 72.30.35.9...
 "
735 telnet  RET  write 21/0x15
735 telnet  CALL  socket(PF_INET,0x1<SOCK_STREAM>,IPPROTO_TCP)
735 telnet  CALL  connect(0x3,0x8002650f0,0x10)
735 telnet  STRU  struct sockaddr { AF_INET, 72.30.35.9:80 }

[...]

918 telnet  GIO  fd 0 read 16 bytes
 "HEAD / HTTP/1.0
 
918 telnet  RET  read 16/0x10
918 telnet  CALL  select(0x4,0x80025e1d8,0x80025e1c8,0x80025e1d0,0x229058)
918 telnet  RET  select 1
918 telnet  CALL  sendto(0x3,0x226490,0x11,0,0,0))
918 telnet  GIO  fd 3 wrote 17 bytes
 "HEAD / HTTP/1.0\r
 
[...]

918 telnet  RET  select 1
918 telnet  CALL  recvfrom(0x3,0x226040,0x400,0,0,0)
918 telnet  GIO  fd 3 read 324 bytes
 "HTTP/1.0 200 OK\r
 Date: Mon, 04 Mar 2019 17:44:09 GMT\r
```
Ok, so how does this work?

- determine which nameserver to query
- ask who has a route to the nameserver
- open socket to well defined port on remote IP
- send queries
- open socket to requested port on remote IP
Let's collect some data...

```bash
laptop$ ssh ec2-user@<instance-name>
$ su
# script commands.out
# ifconfig -a; route -n get default
# cat /etc/resolv.conf
# tcpdump -w tcpdump.out port not 22 >&/dev/null &
# arp -d -a
# ping -n -c 3 8.8.8.8
# ktrace -i telnet www.yahoo.com 80
HEAD / HTTP/1.0
# kill %1
# kdump > kdump.out
# chmod a+r kdump.out
$ exit
laptop$ scp ec2-user@<instance-name>:*out /tmp/
```
A simple example

Finding the next hop:

```
$ tcpdump -t -n -r /tmp/tcpdump.out arp
reading from file /tmp/tcpdump.out, link-type EN10MB (Ethernet)
ARP, Request who-has 10.183.114.1 tell 10.183.114.37, length 28
ARP, Reply 10.183.114.1 is-at fe:ff:ff:ff:ff:ff, length 28
ARP, Request who-has 10.183.114.37 tell 10.183.114.1, length 28
ARP, Reply 10.183.114.37 is-at 22:00:0a:b7:72:25, length 28
```

Enter ARP Spoofing... (Red Team)
A simple example

Performing the DNS query:

```
$ tcpdump -t -n -r tcpdump.out udp port 53
reading from file tcpdump.out, link-type EN10MB (Ethernet)
IP 172.16.0.23.53 > 10.183.114.37.53383: 20378 5/0/0
CNAME atsv2-fp-shed.wg1.b.yahoo.com., A 72.30.35.9, A 72.30.35.10,
```
A simple example

Establishing the connection to the server:

$ tcpdump -t -n -r tcpdump.out tcp port 80
IP 10.183.114.37.45403 > 72.30.35.9.80: Flags [S], seq 5028151, win 65535,
options [mss 1460,nop,wscale 6,sackOK,TS val 598758437 ecr 0], length 0
IP 72.30.35.9.80 > 10.183.114.37.45403: Flags [S.], seq 1983855029, ack 5028152, win
options [mss 1460,sackOK,TS val 1888595968 ecr 598758437,nop,wscale 8], length 0
IP 10.183.114.37.45403 > 72.30.35.9.80: Flags [.], ack 1, win 1026,
options [nop,nop,TS val 598758465 ecr 1888595968], length 0
A simple example

Sending the HTTP request:

IP 10.183.114.37.45403 > 72.30.35.9.80: Flags [P.], seq 1:18, ack 1, win 1026, options [nop,nop,TS val 598762755 ecr 1888595968], length 17: HTTP: HEAD / HTTP/1.0
IP 72.30.35.9.80 > 10.183.114.37.45403: Flags [.], ack 18, win 57, options [nop,nop,TS val 1888600285 ecr 598762755], length 0
IP 10.183.114.37.45403 > 72.30.35.9.80: Flags [P.], seq 18:20, ack 1, win 1026, options [nop,nop,TS val 598764209 ecr 1888600285], length 2: HTTP
IP 72.30.35.9.80 > 10.183.114.37.45403: Flags [.], ack 20, win 57, options [nop,nop,TS val 1888601739 ecr 598764209], length 0
A simple example

Receiving the HTTP response:

IP 72.30.35.9.80 > 10.183.114.37.45403: Flags [P.], seq 1:325, ack 20, win 57, options [nop,nop,TS val 1888601741 ecr 598764209], length 324: HTTP: HTTP/1.0 200 OK
A simple example

Terminating the connection:

IP 72.30.35.9.80 > 10.183.114.37.45403: Flags [F.], seq 325, ack 20, win 57, options [nop,nop,TS val 1888601741 ecr 598764209], length 0
IP 10.183.114.37.45403 > 72.30.35.9.80: Flags [.], ack 326, win 1021, options [nop,nop,TS val 598764236 ecr 1888601741], length 0
IP 10.183.114.37.45403 > 72.30.35.9.80: Flags [F.], seq 20, ack 326, win 1026, options [nop,nop,TS val 598764236 ecr 1888601741], length 0
IP 72.30.35.9.80 > 10.183.114.37.45403: Flags [.], ack 21, win 57, options [nop,nop,TS val 1888601768 ecr 598764236], length 0
Notables from this simple example

“Simple” is, as usual, relative.
Notables from this simple example

“Simple” is, as usual, relative.

- host configuration assumed
- network architecture (internal or across the internet) not relevant (here)
- even simple examples cross multiple layers and protocols (HTTP, DNS; TCP, UDP, ARP)
- we haven’t even scratched the surface
TCP/IP Basics: Protocol Layers

<table>
<thead>
<tr>
<th>Layer</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Application Layer</td>
<td>End-User application programs</td>
</tr>
<tr>
<td>3. Transport Layer</td>
<td>Delivery of data to applications</td>
</tr>
<tr>
<td>2. Network Layer</td>
<td>Basic communication, addressing, and routing</td>
</tr>
<tr>
<td>1. Link Layer</td>
<td>Network Hardware and device drivers</td>
</tr>
<tr>
<td>Physical Layer</td>
<td>Cable or physical medium</td>
</tr>
</tbody>
</table>

Examples of protocols for each layer:

- **Simple Mail Transfer Protocol (RFC 821)**
- **Hypertext Transfer Protocol (RFC 2616)**

- **Transmission Control Protocol (RFC 793; tcp(4))**
- **User Datagram Protocol (RFC 768; udp(4))**

- **Internet Protocol (RFC 791; ip(4))**
- **Internet Control Message Protocol (RFC 792; icmp(4))**

- **Address Resolution Protocol (RFC 826; arp(4))**
TCP/IP Basics: Protocol Layers (OSI Model)

<table>
<thead>
<tr>
<th>OSI Model</th>
<th>Data unit</th>
<th>Layer</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host layers</td>
<td>Data</td>
<td>7. Application</td>
<td>Network process to application</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6. Presentation</td>
<td>Data representation, encryption and decryption, convert machine dependent data to machine independent data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. Session</td>
<td>Interhost communication, managing sessions between applications</td>
</tr>
<tr>
<td>Segments</td>
<td>4. Transport</td>
<td></td>
<td>End-to-end connections, reliability and flow control</td>
</tr>
<tr>
<td>Media layers</td>
<td>Packet/Datagram</td>
<td>3. Network</td>
<td>Path determination and logical addressing</td>
</tr>
<tr>
<td></td>
<td>Frame</td>
<td>2. Data link</td>
<td>Physical addressing</td>
</tr>
<tr>
<td></td>
<td>Bit</td>
<td>1. Physical</td>
<td>Media, signal and binary transmission</td>
</tr>
</tbody>
</table>
TCP/IP Basics: ARP

Ethernet Address Resolution Protocol
– or –
Converting Network Protocol Addresses to 48-bit Ethernet Address for Transmission on Ethernet Hardware

$ arp -a
falcon.srcit.stevens-tech.edu (155.246.89.89) at 00:07:e9:09:ca:10 [ether] on eth0
grohl.srcit.stevens-tech.edu (155.246.89.9) at 00:16:3e:cf:6b:5b [ether] on eth0
hoth.srcit.stevens-tech.edu (155.246.89.10) at 00:1e:68:8e:79:d8 [ether] on eth0
cinema.srcit.stevens-tech.edu (155.246.89.67) at 00:25:90:1e:05:51 [ether] on eth0
cvlan16.cc.stevens-tech.edu (155.246.89.1) at 00:00:5e:00:01:02 [ether] on eth0
vader.srcit.stevens-tech.edu (155.246.89.5) at 00:23:8b:a9:dd:60 [ether] on eth0
nirvana.phy.stevens-tech.edu (155.246.89.33) at 00:1e:68:0f:99:a2 [ether] on eth0
TCP/IP Basics: ARP

who has 10.101.194.209?

10.101.194.209 is at 52:54:00:19:42:09
TCP/IP Basics: ARP

Ethernet Address Resolution Protocol
– or –
Converting Network Protocol Addresses to 48-bit Ethernet Address for Transmission on Ethernet Hardware

ARP, Request who-has 10.114.62.1 tell 10.114.63.209, length 28
ARP, Reply 10.114.62.1 is-at fe:ff:ff:ff:ff:ff, length 28
ARP, Request who-has 10.114.63.209 (ff:ff:ff:ff:ff:ff) tell 0.0.0.0, length 28
ARP, Reply 10.114.63.209 is-at 12:31:3d:04:30:23, length 28
ARP, Request who-has 10.114.63.209 (ff:ff:ff:ff:ff:ff) tell 0.0.0.0, length 28
ARP, Reply 10.114.63.209 is-at 12:31:3d:04:30:23, length 28
ARP, Request who-has 10.114.63.209 (ff:ff:ff:ff:ff:ff) tell 0.0.0.0, length 28
ARP, Reply 10.114.63.209 is-at 12:31:3d:04:30:23, length 28
Neighbor Discovery Protocol

```
$ ndp -n -a
Neighbor            Linklayer Address     Netif Expire   S Flags
fe80::21b:21ff:fe45:bf54%xennet0 00:1b:21:45:bf:54  xennet0  21m52s     S R
fe80::21b:21ff:fe7a:7269%xennet0 00:1b:21:7a:72:69  xennet0  23h59m59s S R
fe80::e276:63ff:fe72:3900%xennet0 e0:76:63:72:39:00  xennet0  permanent R
fe80::1%lo0              (incomplete)      lo0           permanent R
$```

TCP/IP Basics: ND

Neighbor Discovery Protocol

IP6  fe80::21b:21ff:fe7a:7269 > ff02::1:ff62:3400: ICMP6,

IP6  2001:470:30:84:e276:63ff:fe72:3900 > ff02::1:ff7a:7269: ICMP6,
neighbor solicitation, who has fe80::21b:21ff:fe7a:7269, length 32

ICMP6, neighbor advertisement, tgt is fe80::21b:21ff:fe7a:7269, length 32
TCP/IP Basics: ICMP

Internet Control Message Protocol

$ ping -c 3 www.yahoo.com
PING any-fp.wa1.b.yahoo.com (67.195.160.76): 56 data bytes
64 bytes from 67.195.160.76: icmp_seq=0 ttl=53 time=30.888 ms
64 bytes from 67.195.160.76: icmp_seq=1 ttl=53 time=23.193 ms
64 bytes from 67.195.160.76: icmp_seq=2 ttl=53 time=25.433 ms

----any-fp.wa1.b.yahoo.com PING Statistics----
3 packets transmitted, 3 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 23.193/26.505/30.888/3.958 ms
$

Enter ICMP attacks... (Blue Team)
TCP/IP Basics: ICMP: Ping
TCP/IP Basics: ICMP

Internet Control Message Protocol

$ tcpdump -r tcpdump.out -n icmp
IP 10.234.84.220 > 207.237.69.79: ICMP echo request
IP 207.237.69.79 > 10.234.84.220: ICMP echo reply
IP 10.234.84.220 > 207.237.69.79: ICMP echo request
IP 207.237.69.79 > 10.234.84.220: ICMP echo reply
IP 10.234.84.220 > 207.237.69.79: ICMP echo request
IP 207.237.69.79 > 10.234.84.220: ICMP echo reply
TCP/IP Basics: ICMP6

Internet Control Message Protocol for IPv6

$ ping6 -c 3 www.netbsd.org
PING6(56=40+8+8 bytes) 2001:470:30:84:204:d7b0:0:1 --> 2001:4f8:3:7:2e0:81ff:fe52:9a6b
16 bytes from 2001:4f8:3:7:2e0:81ff:fe52:9a6b, icmp_seq=0 hlim=57 time=74.316 ms
16 bytes from 2001:4f8:3:7:2e0:81ff:fe52:9a6b, icmp_seq=1 hlim=57 time=71.260 ms
16 bytes from 2001:4f8:3:7:2e0:81ff:fe52:9a6b, icmp_seq=2 hlim=57 time=71.321 ms

--- www.netbsd.org ping6 statistics ---
3 packets transmitted, 3 packets received, 0.0% packet loss
round-trip min/avg/max/std-dev = 71.260/72.299/74.316/1.747 ms
TCP/IP Basics: ICMP6

Internet Control Message Protocol for IPv6

IP6 2001:470:30:84:204:d7b0:0:1 >
  2001:4f8:3:7:2e0:81ff:fe52:9a6b: ICMP6, echo request, seq 0, length 16
IP6 2001:4f8:3:7:2e0:81ff:fe52:9a6b >
  2001:470:30:84:204:d7b0:0:1: ICMP6, echo reply, seq 0, length 16
IP6 2001:470:30:84:204:d7b0:0:1 >
  2001:4f8:3:7:2e0:81ff:fe52:9a6b: ICMP6, echo request, seq 1, length 16
IP6 2001:4f8:3:7:2e0:81ff:fe52:9a6b >
  2001:470:30:84:204:d7b0:0:1: ICMP6, echo reply, seq 1, length 16
IP6 2001:470:30:84:204:d7b0:0:1 >
  2001:4f8:3:7:2e0:81ff:fe52:9a6b: ICMP6, echo request, seq 2, length 16
IP6 2001:4f8:3:7:2e0:81ff:fe52:9a6b >
  2001:470:30:84:204:d7b0:0:1: ICMP6, echo reply, seq 2, length 16
TCP/IP Basics: ICMP: Traceroute

1. UDP port 33441, TTL=1

Router 1

TTL = TTL - 1
if TTL == 0: TIME EXCEEDED

Router 2

Router 3

Networking II March 4, 2019
TCP/IP Basics: ICMP: Traceroute

2. UDP port 33441, TTL= 2

TTL = TTL - 1

if TTL == 0: TIME EXCEEDED
TCP/IP Basics: ICMP: Traceroute
TCP/IP Basics: ICMP: Traceroute

**Diagram:**
- 4. UDP port 33441, TTL= 4
- TTL = TTL - 1
- Router 1
- TTL = TTL - 1
- Router 2
- TTL = TTL - 1
- Router 3
- Destination unreachable

Networking II

March 4, 2019
TCP/IP Basics: ICMP

Internet Control Message Protocol

$ traceroute www.netbsd.org
traceroute to www.netbsd.org (204.152.190.12), 64 hops max, 40 byte packets
  1  eth2-3a.core1.nav.nyc.access.net (166.84.0.1)  0.256 ms  0.165 ms  0.181 ms
  2  l3v1.nyc.access.net (166.84.66.14)  1.570 ms  1.556 ms  1.437 ms
  3  gige-g3-3.core1.nyc4.he.net (209.51.171.25)  4.963 ms  2.422 ms  1.457 ms
  4  10gigabitethernet2-3.core1.ash1.he.net (72.52.92.86)  8.423 ms  8.769 ms  7.683 ms
  5  10gigabitethernet1-2.core1.atl1.he.net (184.105.213.110) 21.898 ms 19.647 ms 19.838 ms
  6  isc.gige-g2-1.core1.atl1.he.net (216.66.0.50)  77.465 ms  77.921 ms  80.519 ms
  7  iana.r1.atl1.isc.org (199.6.12.1)  77.302 ms  78.230 ms  81.782 ms
  8  int-0-5-0-1.r1.pao1.isc.org (149.20.65.37)  81.860 ms  83.780 ms  84.160 ms
  9  int-0-0-1-0.r1.sql1.isc.org (149.20.65.10)  81.543 ms  80.193 ms  84.434 ms
 10  www.netbsd.org (204.152.190.12)  81.986 ms  81.008 ms  82.604 ms
$
TCP/IP Basics: ICMP

Internet Control Message Protocol

IP (tos 0x0, ttl 1, id 44866, offset 0, flags [none], proto UDP (17), length 40)
  166.84.7.99.44865 > 149.20.53.86.33435: [udp sum ok] UDP, length 12
IP (tos 0xc0, ttl 64, id 48796, offset 0, flags [none], proto ICMP (1), length 68)
  166.84.0.1 > 166.84.7.99: ICMP time exceeded in-transit, length 48
IP (tos 0x0, ttl 2, id 44869, offset 0, flags [none], proto UDP (17), length 40)
  166.84.7.99.44865 > 149.20.53.86.33438: [udp sum ok] UDP, length 12
IP (tos 0x0, ttl 3, id 44872, offset 0, flags [none], proto UDP (17), length 40)
  166.84.7.99.44865 > 149.20.53.86.33441: [udp sum ok] UDP, length 12
IP (tos 0x0, ttl 4, id 44875, offset 0, flags [none], proto UDP (17), length 40)
  166.84.7.99.44865 > 149.20.53.86.33444: [udp sum ok] UDP, length 12
IP (tos 0x0, ttl 252, id 6760, offset 0, flags [none], proto ICMP (1), length 56)
  154.24.25.109 > 166.84.7.99: ICMP time exceeded in-transit, length 36
...
IP (tos 0x0, ttl 248, id 0, offset 0, flags [none], proto ICMP (1), length 56)
  149.20.53.86 > 166.84.7.99: ICMP 149.20.53.86 udp port 33482 unreachable, length
TCP/IP Basics: ICMP6

Internet Control Message Protocol for IPv6

$ traceroute6 www.netbsd.org
traceroute6 to www.netbsd.org (2001:4f8:3:7:2e0:81ff:fe52:9a6b) from
    2001:470:30:84:204:d7b0:0:1, 64 hops max, 12 byte packets
1  router.vc.panic.com  0.271 ms  0.282 ms  0.155 ms
2  2001:470:30::a654:420e  5.459 ms  1.251 ms  1.073 ms
3  gige-g3-3.core1.nyc4.he.net  1.288 ms  2.001 ms  10.176 ms
4  10gigabitethernet8-3.core1.chi1.he.net  26.603 ms  20.532 ms  25.029 ms
5  2001:470:1:34::2  72.033 ms  72.377 ms  72.686 ms
6  iana.r1.ord1.isc.org  76.288 ms  72.773 ms  71.481 ms
7  int-0-0-1-8.r1.pao1.isc.org  73.027 ms  76.489 ms  77.507 ms
8  int-0-0-1-0.r2.sql1.isc.org  73.555 ms  75.367 ms  74.769 ms
9  www.NetBSD.org  72.036 ms  72.522 ms  71.39 ms
$
TCP/IP Basics: ICMP6

Internet Control Message Protocol for IPv6

IP6 2001:470:30:84:204:d7b0:0:1.51749 >
   2001:4f8:3:7:2e0:81ff:fe52:9a6b.33435: UDP, length 12
IP6 2001:470:30:84::3 > 2001:470:30:84:204:d7b0:0:1:
   ICMP6, time exceeded in-transit [icmp6]
IP6 2001:470:30:84:204:d7b0:0:1.51749 >
   2001:4f8:3:7:2e0:81ff:fe52:9a6b.33436: UDP, length 12
   [...
IP6 2001:470:30:84:204:d7b0:0:1.51749 >
   2001:4f8:3:7:2e0:81ff:fe52:9a6b.33461: UDP, length 12
IP6 2001:4f8:3:7:2e0:81ff:fe52:9a6b >
   2001:470:30:84:204:d7b0:0:1: ICMP6, destination unreachable[icmp6]
TCP/IP Basics: TCP

Transmission Control Protocol

$ telnet www.yahoo.com 80
Trying 98.138.219.232...
Connected to atsv2-fp-shed.wg1.b.yahoo.com.
Escape character is '^[].
HEAD / HTTP/1.0
TCP/IP Basics: TCP

IP 10.183.114.37.45403 > 72.30.35.9.80: Flags [S], seq 5028151, win 65535, options [mss 1460,nop,wscale 6,sackOK,TS val 598758437 ecr 0], length 0
IP 72.30.35.9.80 > 10.183.114.37.45403: Flags [S.], seq 1983855029, ack 5028152, win options [mss 1460,sackOK,TS val 1888595968 ecr 598758437,nop,wscale 8], length 0
IP 10.183.114.37.45403 > 72.30.35.9.80: Flags [.], ack 1, win 1026, options [nop,nop,TS val 598758465 ecr 1888595968], length 0
IP 10.183.114.37.45403 > 72.30.35.9.80: Flags [P.], seq 1:18, ack 1, win 1026, options [nop,nop,TS val 598762755 ecr 1888595968], length 17: HTTP: HEAD / HTTP/1.0 [...]
TCP/IP Basics: TCP

Transmission Control Protocol over IPv6

$ telnet www.netbsd.org 80
Trying 2001:4f8:3:7:2e0:81ff:fe52:9a6b...
Connected to www.netbsd.org.
Escape character is '^[].
GET / HTTP/1.0
TCP/IP Basics: TCP

Transmission Control Protocol IPv6

IP6 2001:470:30:84:204:d7b0:0:1.58334 >
  2001:4f8:3:7:2e0:81ff:fe52:9a6b.80: S 3232473102:3232473102(0)
  win 32768 <mss 1440,nop,wscale3,sackOK,nop,nop,nop,nop,timestamp 1[|tcp]>
IP6 2001:4f8:3:7:2e0:81ff:fe52:9a6b.80 >
  2001:470:30:84:204:d7b0:0:1.58334: S 4139493123:4139493123(0)
  ack 3232473103 win 32768
IP6 2001:470:30:84:204:d7b0:0:1.58334 >
  2001:4f8:3:7:2e0:81ff:fe52:9a6b.80: . ack 1 win 4140
IP6 2001:470:30:84:204:d7b0:0:1.58334 >
  2001:4f8:3:7:2e0:81ff:fe52:9a6b.80: P 1:17(16) ack 1 win 4140
IP6 2001:4f8:3:7:2e0:81ff:fe52:9a6b.80 >
  2001:470:30:84:204:d7b0:0:1.58334: . ack 17 win 33120
TCP/IP Basics: UDP

User Datagram Protocol

$ nslookup www.yahoo.com
Server: 155.246.1.20
Address: 155.246.1.20#53

Non-authoritative answer:
any-fp3-lfb.wa1.b.yahoo.com  canonical name = any-fp3-real.wa1.b.yahoo.com.
Name: any-fp3-real.wa1.b.yahoo.com
Address: 98.139.183.24

$
TCP/IP Basics: UDP

User Datagram Protocol

IP (tos 0x0, ttl 64, id 0, offset 0, flags [none],
proto UDP (17), length 59) panix.netmeister.org.49164 >

IP (tos 0x0, ttl 63, id 1862, offset 0, flags [none],
proto UDP (17), length 207) cache2.ns.access.net.domain >
   panix.netmeister.org.49164: 28557 4/2/2
       www.yahoo.com. CNAME fp3.wg1.b.yahoo.com.[|domain]
TCP/IP Basics: UDP

User Datagram Protocol over IPv6

$ dig -6 @2001:470:20::2 www.yahoo.com

;; ANSWER SECTION:
any-fp3-real.wa1.b.yahoo.com. 60 IN A 98.139.183.24

;; Query time: 51 msec
;; MSG SIZE  rcvd: 128
TCP/IP Basics: UDP

User Datagram Protocol over IPv6

IP6 (hlim 64, next-header: UDP (17), length: 39)
2001:470:30:84:204:d7b0:0:1.65037 > 2001:470:20::2.53:

IP6 (hlim 61, next-header: UDP (17), length: 119)
2001:470:20::2.53 > 2001:470:30:84:204:d7b0:0:1.65037:
18545 4/0/0 www.yahoo.com.[|domain]
TCP/IP Basics: Putting it all together

- **Application Layer**
  - arp
  - ssh, ftp, http
  - dns
  - traceroute

- **Transport Layer**
  - TCP
  - UDP

- **Network Layer**
  - IP (v4/v6)
  - ICMP (v4/v6)

- **Link Layer**
  - ARP, Device Drivers

- **Physical Layer**
  - hardware (copper, fiber, radio)
Networking

Load Balancer

98.139.180.149

default route

DNS Server
155.246.1.20

www.yahoo.com: see fd-fp3.wg1.b.yahoo.com (98.139.180.149)

Web Server

VIP

ARP
UDP
TCP request
TCP reply
Homework

Reading

- tcpdump(8)
- ktrace(1) / strace(1)
- tcp(4)/ip(4)
- netstat(1)
- nslookup(1)

https://is.gd/mrrdYc