System Administration

Week 03, Segment 1
The Boot Process & the MBR

Department of Computer Science
Stevens Institute of Technology

Jan Schaumann
jschauma@stevens.edu
https://stevens.netmeister.org/615/
NetBSD/x86 BIOS Boot, Revision 5.11 (Fri Feb 14 00:06:28 UTC 2020) (from NetBSD 9.0)

Memory: 639/1047552 k

1. Boot normally
2. Boot single user
3. Drop to boot prompt

Choose an option: RETURN for default; SPACE to stop countdown. Option 1 will be chosen in 5 seconds.
Booting up a web server

- power on hardware
- POST and other hardware initialization
- first stage boot loader
- second stage boot loader
- hypervisor kernel dom0 starts

- domU is started
- guest OS kernel starts
- kernel initializes (virtual) hardware

physical host

virtual host
Booting up a web server

- power on hardware
- POST and other hardware initialization
- first stage boot loader
- second stage boot loader
- hypervisor kernel dom0 starts
- domU is started
- guest OS kernel starts
- kernel initializes (virtual) hardware
- `init(8)` (or similar) starts
- system processes / daemons start
- web server runs, binds network socket, serves content
AMIBIOS(C)2007 American Megatrends, Inc.
ASUS P5KPL ACPI BIOS Revision 0603
CPU : Intel(R) Pentium(R) Dual CPU E2180 @ 2.00GHz
 Speed : 2.51 GHz Count : 2

Press DEL to run Setup
Press F8 for BBS POPUP
DDR2-667 in Dual-Channel Interleaved Mode
Initializing USB Controllers .. Done.
3584MB OK

(C) American Megatrends, Inc.
64-0603-000001-00101111-022908-Bearlake-A0820000-Y2KC
MBR
Sector 0
512 bytes
Master Boot Record

- first sector (512 bytes) of storage device

Bytes 510, 511 contain boot signature 0x55 0xAA
Master Boot Record
• first sector (512 bytes) of storage device
• last two bytes contain boot signature
 (0x55, 0xAA)

64 bytes
Bytes: 446 - 509
Master Boot Record
• first sector (512 bytes) of storage device
• last two bytes contain boot signature
 \((0x55, 0xAA)\)
• 64 bytes allocated for partition table

\[
64 \text{ bytes} = 4 \times 16 \text{ bytes}
\]
Master Boot Record
• first sector (512 bytes) of storage device
• last two bytes contain boot signature (0x55, 0xAA)
• 64 bytes allocated for partition table
• 4 “primary partitions”, 16 bytes each
Master Boot Record
• first sector (512 bytes) of storage device
• last two bytes contain boot signature (0x55, 0xAA)
• 64 bytes allocated for partition table
• 4 “primary partitions”, 16 bytes each
• 446 bytes for stage 1 boot loader
Master Boot Record
• first sector (512 bytes) of storage device
• last two bytes contain boot signature (0x55, 0xAA)
• 64 bytes allocated for partition table
• 4 “primary partitions”, 16 bytes each
• 446 bytes for stage 1 boot loader
• stage 1 may reach into other sectors of first track or jump to boot code found on the OS partition for stage 2
Partition Table Entry

16 bytes
Partition Table Entry

16 bytes

Offset: 0x00

1 byte status: 0x80 = "active"
Partition Table Entry

16 bytes

Offset: 0x00
0x01

1 byte status: 0x80 = "active"

3 bytes CHS of first sector
Partition Table Entry

16 bytes

1 byte Head

1 byte status: 0x80 = "active"

Limits:

1 byte Head => 2^8 => 256

Offset:

0x00
0x01
Partition Table Entry

16 bytes

Limits:

1 Byte Head => 2^8 => 256
6 Bits Sector => 2^6 => 64

Offset:

0x00
0x01

1 byte status: 0x80 = “active”

1 byte Head
2 bits high bits of Cylinder, 6 bits Sector
Partition Table Entry

16 bytes

Limits:

1 Byte Head => 2^8 => 256
6 Bits Sector => 2^6 => 64
10 Bits Cylinder => 2^{10} => 1024

Offset: 0x00

1 byte status: 0x80 = "active"

0x01

1 byte Head

8 bits of Cylinder

2 bits high bits of Cylinder, 6 bits Sector
Partition Table Entry

16 bytes

Limits:
- 1 Byte Head => 2^8 => 256
- 6 Bits Sector => 2^6 => 64
- 10 Bits Cylinder => 2^10 => 1024

Offset:
- 0x00
- 0x01
- 0x04

1 byte status: 0x80 = “active”

1 byte Head
2 bits high bits of Cylinder, 6 bits Sector
8 bits of Cylinder

1 byte partition type
Partition Table Entry

16 bytes

Limits:
1 Byte Head => 2^8 => 256
6 Bits Sector => 2^6 => 64
10 Bits Cylinder => 2^10 => 1024

Offset:
0x00
0x01
0x04
0x05

1 byte status: 0x80 = “active”
1 byte Head
2 bits high bits of Cylinder, 6 bits Sector
8 bits of Cylinder
1 byte partition type
3 bytes CHS of last sector
Partition Table Entry

16 bytes

Limits:

1 Byte Head => 2^8 => 256
6 Bits Sector => 2^6 => 64
10 Bits Cylinder => 2^10 => 1024

Offset:

0x00
1 byte status: 0x80 = “active”

0x01
1 byte Head

2 bits high bits of Cylinder, 6 bits Sector

8 bits of Cylinder

0x04
1 byte partition type

0x05
1 byte Head

2 bits high bits of Cylinder, 6 bits Sector

8 bits of Cylinder
Partition Table Entry

16 bytes

Limits:

- 1 Byte Head => 2^8 => 256
- 6 Bits Sector => 2^6 => 64
- 10 Bits Cylinder => 2^{10} => 1024

Offset:

- 0x00: 1 byte status: 0x80 = “active”
- 0x01: 1 byte Head
- 0x04: 1 byte partition type
- 0x05: 1 byte Head
- 0x08: 4 bytes LBA of first sector

2 bits high bits of Cylinder, 6 bits Sector
8 bits of Cylinder
Partition Table Entry

16 bytes

Limits:

1 Byte Head => 2^8 => 256
6 Bits Sector => 2^6 => 64
10 Bits Cylinder => 2^10 => 1024

Offset:

0x00: 1 byte status: 0x80 = "active"
0x01: 1 byte Head
0x04: 1 byte partition type
0x05: 1 byte Head
0x08: 4 bytes LBA of first sector
0x0C: 4 bytes LBA of last sector
To translate LBA to CHS:

- Cylinder = LBA / (Heads per Cylinder * Sectors Per Track)
- Remainder = LBA % (Heads per Cylinder * Sectors Per Track)
- Head = Remainder / Sectors Per Track
- Sector = (Remainder % Sectors Per Track) + 1
Disk: /dev/rxbd1
NetBSD disklabel disk geometry:
cylinders: 3072, heads: 1, sectors/track: 2048 (2048 sectors/cylinder)
total sectors: 6291456, bytes/sector: 512

BIOS disk geometry:
cylinders: 391, heads: 255, sectors/track: 63 (16065 sectors/cylinder)
total sectors: 6291456

Partitions aligned to 16065 sector boundaries, offset 63

Partition table:
0: <UNUSED>
1: <UNUSED>
2: <UNUSED>
3: <UNUSED>
Bootselector disabled.
No active partition.
Drive serial number: 0 (0x00000000)

```
ip-10-10-0-43# dd if=/dev/xbd1 count=1 2>/dev/null | hexdump -C
00000000  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  |.................|
```

*
00000200

ip-10-10-0-43#
fdisk: Cannot determine the number of heads
Disk: /dev/rxbd1
NetBSD disklabel disk geometry:
cylinders: 3072, heads: 1, sectors/track: 2048 (2)
total sectors: 6291456, bytes/sector: 512

BIOS disk geometry:
cylinders: 391, heads: 255, sectors/track: 63 (16065 sectors/cylinder)
total sectors: 6291456

Partitions aligned to 2048 sector boundaries, offset 0

Partition table:
0: NetBSD (sysid 169)
 start 0, size 0, Active
 beg: cylinder 0, head 0, sector 0
 end: cylinder 0, head 0, sector 0
 PBR appears to be bootable
1: </UNUSED>
2: </UNUSED>
3: </UNUSED>
First active partition: 0
Drive serial number: 0 (0x00000000)
ip-10-10-0-43#
beg: cylinder 0, head 32, sector 33
end: cylinder 0, head 0, sector 0
PBR appears to be bootable

3 bytes CHS:
1 byte Head
2 bits high bits of Cylinder, 6 bits Sector
8 bits of Cylinder

First active partition: 0
Drive serial number: 0 (0x00000000)

```
ip-10-10-0-43# echo $(( 6291455 / 16065 ))
391
```
```
ip-10-10-0-43# echo $(( 6291455 % 16065 ))
10040
```
```
ip-10-10-0-43# echo $(( 10040 / 63 ))
159
```
```
ip-10-10-0-43# export H=$(printf '%x\n' $(( 10040 / 63 )))
ip-10-10-0-43# echo $H
9f
```
```
ip-10-10-0-43# echo $(( 10040 % 63 + 1 ))
24
```
```
ip-10-10-0-43# (echo obase=2; echo $(( 10040 % 63 + 1 ))); ) | bc
110000111
```
```
ip-10-10-0-43# (echo obase=2; echo 391; ) | bc
```
```
ip-10-10-0-43# ```
fdisk: Cannot determine the number of heads
Disk: /dev/rxbd1
NetBSD disklabel disk geometry:
cylinders: 3072, heads: 1, sectors/track: 2048 (2048 sectors/cylinder)
total sectors: 6291456, bytes/sector: 512

BIOS disk geometry:
cylinders: 391, heads: 255, sectors/track: 63 (16065 sectors/cylinder)
total sectors: 6291456

Partitions aligned to 2048 sector boundaries, offset 0

Partition table:
0: NetBSD (sysid 169)
   start 0, size 0, Active
   beg: cylinder 0, head 32, sector 33
   end: cylinder 391, head 159, sector 24
   PBR appears to be bootable
1: <UNUSED>
2: <UNUSED>
3: <UNUSED>
First active partition: 0
Drive serial number: 0 (0x000000000)
ip-10-10-0-43#
Simplified Boot Sequence

• basic firmware (e.g., BIOS, UEFI, Open Firmware / OpenBoot)
  • Power-on Self-Test
  • tests/initializes hardware
• transfer of execution to first-stage boot loader (Master Boot Record, GUID Partition Table, netbooting, …)
• second-stage boot loader (e.g., GRUB)
• load kernel
• kernel transfers control to init(8)

Note: in virtualized environments, some of these steps are skipped, repeated, or simulated.
Exercises

• Use the ‘aws ec2 get-console-output’ command to get the output from the (virtual) console of different OS instances. Compare, paying particular attention to the filesystem specific parts. Can you explain what’s happening in each?

Sample boot sequences at:
https://stevens.netmeister.org/615/boot-sequence/

• How do you know if your system is trustworthy once it boots up? Review “remote attestation” of software, “secure boot” mechanisms, and “Trusted Computing”.

We still haven’t gotten to the filesystem… let’s fix that in our next video.
Links

File Systems and Storage Models:

BIOS: https://en.wikipedia.org/wiki/BIOS
Booting: https://en.wikipedia.org/wiki/Booting

Manual pages:
boot(8), disklabel(8), fdisk(8), gpt(8), installboot(8), mbr(8), mbrlabel(8)