CS631 - Advanced Programming in the UNIX Environment Slide 1

CS631 - Advanced Programming in the UNIX
Environment

UNIX development tools

Department of Computer Science
Stevens Institute of Technology
Jan Schaumann
jschauma@stevens.edu
https://stevens.netmeister.org/631/




CS631 - Advanced Programming in the UNIX Environment Slide 2

Software Development Tools

File Edit Wiew Project Buld Debug Data Tools Test ReSharper TeamConcert Window Help
= I B W et B Any CPU =28
7 Classl.cs T X
¢ ClassLibrary 1. Foo {ﬂ‘ @ count eV % ; ‘ e L
F namespace ClassLibrarvl #5] Selution C\?ssleraryl (Lproject) = REWQ_ itory Connections Team Arfacts
; =5 dassLibrary1 £ kishore@9.126.84.231
. _ =R rhies | = (8 TestAreaFor20RC1 [kishore@9.125.84.231)
fubllc class Foo ! lj’ Open & Cx Buids
@ [ References || g = (= [ Build Engines
i s g n 5 H k-
1 public int count: 88 Classi.cs 'ﬁ et . Build Queue
;3 3 | Disconnect Project(s) from Jazz 42, Enginet (warning)
¥ & | Add to Ignore List... :ﬁ TeamBuildEngine (warning)
) = [ Build Definitions
<.| T | Compare With » O BuildDeft
¢ TestAreaFor20RC1 Team build
Team Concert Search - Snapshots ~ 1 X || Change Explorer - Compare TestAreaFor20RC1 Team build_20,,, » & X e ‘g_ﬂ Source Control
& EN = # I5 werk Items
a2 ‘ Soash & |.-(*'J|. 005 oy . || @ (5 My Repository Workspaces
. . 2 = 5a L —
Date Created ) NEI:HE ‘ ] = = Only In TesttreaFor20RC1 Team build_20090513-1427 1_ Bullds - TestAreaFor 20RC 1 Team build - Found '26' Builds
5/14/2009 8:35 PM I uiIdDeanrdpenﬁJHeamfZDDSOSM-Z&}g‘ 3 4 TestAreaFor20RCL Team Default Component & }
5/13/2009 2:27 PM estAreaFor20RCT Team build 20090513 | @ J  Buld 55 Fuids _
5/13/2009 2:46 PM estAreaFor20RC1 Team build_20090513- = (= Only In TestAreaFor20RC1 Team build_20090514-2041 || Build Status | Build State | Label | Progress Start Time !1
5/13/2008 2:47 Pt estAreafor20RCL Team bulld 20090515 | o 1 TactareaFor20RCE Team Default Componant Ll 3 200905142041 Completed  5/14/2009 8
| 5/15/2008 2:48 PH estAreaFor20RC1 Team bn.:ﬁd_zoususli—‘v P o— = & 20090513-1531  Completed  5/13/2008 3
<] dud | (2] @/ Priva - Move folder 'HelloWodd| ITFR' to rommnanent B | Y7 i 20050513-1528  Completed  5/13/2008 3{v
Pending Changes - 1 unresolved local, 1 outgoing change set =1 x|Is Al | IE
;\‘,gh | ;& | S5 gL ‘fb =t | - [ <Keyword> o : oo History - 'SCM' in workspace 'Build Worksapce' (6 entries) -3 X
= [F TestWorkspace 3 2] _':3?‘ | Histary
= g TestWorkspace 3 | =l | Comment | Creator [
& 2 Unresolved —1| /A <No Commant> Priya o=
S #® Outgoing [w]| A 27: ctc changes Priya |:|
i ‘Foldert’ ; v
Work Items - Found 7 work items - Open assigned to me > 1 X ,‘,f\l,,l\iu,&,i%mmuem i o aOR). pella 7'
B 7 | S E | & | calumns > ok lems [ Repository Fles - Buld Viorksapce e
Type | 1d | Summary | Owned By | Status Pricrity | Severity | g ® <L Build f )
=] 9 Define a new build Kishore = New 0 @ 513" &5 eompl b
10 Share code with Jazz Source Control Kishora = New 0 @ 5cM
B 12 Define i i Kishora = New 0 L & [ Folderl
< = ‘ Bl | 5 eosm
& I{E.Repcsltorv Files Ig Properties |
i

Lecture 10: Things That Will Make Your Life Significantly Easier October 5, 2020



CS631 - Advanced Programming in the UNIX Environment

Software Development Tools

Slide 3

000

¥ ischauma — smurf [631] — ssh — B0x44 — 324 u

int rval;
int i;

/* Create socket */

sock = socket(AF_INET, SOCK _STREAM, @),

if (sock < @) {
perror("opening stream socket");
exit(l);

}

/* Name socket using wildcards */

server.sin_family = AF_INET;

server,sin_addr.s_addr = INADDR_ANY,

server.sin_port = @;

if (bind(sock, (struct sockaddr *)&server, sizeof(server))) {
perrar("binding stream socket");
exit(1);

}

/* Find out assigned port number and print it out */

length = sizeof(server);

if (getsockname(sock, (struct sockaddr *)&server, &length)) ({
perror("getting socket name");
exit(l);

}
printf("Socket has port #%d\n", ntohs(server.sin_port)),

/* Start accepting connections */
listen(sock, 5);

do {
msgsock = accept(sock, @, 0);
if (msgsack == -1)
perror("accept");
else do {

bzero(buf, sizeof(buf));
if ((rval = read(msgsock, buf, 1024)) < @)
perror('reading stream message");
i=0;
if (rval == @)
printf("Ending connectionin");
else
printf("-->%s\n", buf);
} while (rval != @);
close(msgsock);
} while [@TRUE);

Lecture 10: Things That Will Make Your Life Significantly Easier

October 5, 2020



CS631 - Advanced Programming in the UNIX Environment Slide 4

Software Development Tools

UNIX Userland is an IDE — essential tools that follow the paradigm of “Do
one thing, and do it right” can be combined.

The most important tools are:
@ $EDITOR
@ the compiler toolchain
@ gdb (1) — debugging your code

@ make (1) — project build management, maintain program
dependencies

@ diff (1) and patch(1) — report and apply differences between files

@ cvs(1), svn(1), git (1) etc. — distributed project management,
version control

Lecture 10: Things That Will Make Your Life Significantly Easier October 5, 2020



CS631 - Advanced Programming in the UNIX Environment Slide 5

EDITOR

Know your $EDITOR. Core functionality:
@ syntax highlighting
@ efficient keyboard maneuvering
@ setting markers, using buffers
@ copy, yank, fold e.g. blocks
@ search and replace
@ window splitting
@ autocompletion
@ jump to definition / manual page

@ applying external commands and filters

Lecture 10: Things That Will Make Your Life Significantly Easier October 5, 2020



CS631 - Advanced Programming in the UNIX Environment Slide 6

EDITOR

Examples given using vim(1).

Efficient keyboard maneuvering:
@ up, down, left, right (h, |, k, 1)
@ move by word, go to end (w, b, e)

@ search forward, backward, move to beginning or end of line (, /, ?, =,
$)

@ page up or down (~D, "B)
@ center page, top or bottom (zz, zt, zb)

@ move to matching brace, move to beginning/end of code block (%, 17,
[{)

@ move through multiple files (:n, :prev, rrew)

Lecture 10: Things That Will Make Your Life Significantly Easier October 5, 2020



CS631 - Advanced Programming in the UNIX Environment Slide 7

EDITOR

Examples given using vim(1).

Copy, yank, fold, markers, buffers etc.:
@ set and display markers (m [a-zA-Z], :marks)
@ select visual blocks (v, V)
@ format / indent selected block (=)
@ delete, yank, use of buffers (d, y, "xy, "xp)

@ fold sections (zf, zA)

Lecture 10: Things That Will Make Your Life Significantly Easier October 5, 2020



CS631 - Advanced Programming in the UNIX Environment Slide 8

EDITOR

Examples given using vim(1).

Look-ups:
o

find /usr/src -name ’*[ch]’ -print | xargs ctags -f “/.ctags
@ echo "set tags+="/.ctags" >> 7/.vimrc
@ Citrl+], Ctrl+t — jump to definition and back
@ K —jump to manual page

@ Ctrl+N — autocomplete

Lecture 10: Things That Will Make Your Life Significantly Easier October 5, 2020



CS631 - Advanced Programming in the UNIX Environment Slide 9

EDITOR

Examples given using vim(1).

Integration with compiler, debugger, make (1) etc.

vim welcome.c
:make
Ctrl+]
:cnext

Finally, two of your most powerful Unix IDE integrations are a terminal
multiplexer (e.g. screen(1) or tmux (1)) and copious use of Ctrl+Z (i.e.,
the shell’s job control mechanisms).




CS631 - Advanced Programming in the UNIX Environment

EDITOR

Slide 10

Examples given using vim(1).

( version 1.1
April 1st, 06

vi / vim graphical cheat sheet

normal
mode
toggle external play rev 0/ goto || A soft repeat|[# next begin end "soft" bol next
~ case ! filter "macrol # il:lent ol A/(I}mxtrh bal & 5 ident ) ___ down line
X, Febe = “hard"|[Z prev |[ = awte?
|1 2 3 4 5 6 7 8 9 0 "t e || S tormat
ex next end replacel back yank undo insert open paste begin |[ |, end
Q mode 'ORIY WORIY R mode T "till line line I at bol On Ve P before| parag. JP parag.
record| next end replace] . 1. :  insert open aste | e
" macro waord word I char t' i y yapk 1 undo 1 mode (0] bc};u“ p E:ﬁe'r o i fammEe
append subst delete "back”| eof/ screen) oin screen exemd || 1 reg. ! ol
at eol line to eol “find ch) Ggololn H top J ines K help Lbol‘.tnm . "line spec guml{'.al
3

L]
dappend|| S 5':11“1;_‘ ddﬂ]ni:é

find

" char .::(r':‘-‘ h - J ‘ k

2 = | sl [\ et

7 aun[[ X Backe | (Y

change
1o eol

e || vE6an| |IN e | IV

I | |

cmds

5 13| i
Z o’ | X | € chanse] [V 320 || foea [T G | [TT 2w

reverse repeat
PN | * fnd

moves the cursor, or defines
o the range for an operator
direect action command,
if red, it enters insert mode
requires a motion afterwards,
operates between cursor &
destination
special functions,
extra | requires extra input
= commands with a dot need

q a char argument afterwards
hol = beginning of line, eol = end of line,
mk = mark, yank = copy
words:  Fuuxifock]
WORDs: bar | baz) i

-

Main command line commands ('ex'):
w (save), :q (quit), :q! (quit w/o saving)

e  (open file ?)

:%s/x/y/g (replace 'x' by 'y filewide),

th (help in vim), :new (new file in vim},

Other important commands:
CTRL-R: redo (vim),

CTRL-F/-B: page up/down,
CTRL-E/-Y: scroll line up/down,
CTRL-V: block-visual mode (vim only)

Visual mode:
Move around and type operator to act
on selected region (vim only)

Notes:
(1) use "x before a yank/paste/del command

to use that register ('clipboard') (x=a..z.")

(e.g.: "ay$ to copy rest of line to reg 'a")
(2) type in a number before any action

to repeat it that number of times

(e.g.: 2p, d2w, 5i, d4j)
(3) ﬂuglic:tte operator to act on current line

(dd = delete line, >> = indent line)
(4) ZZ to save & quit, Z4) to quit w/o saving
(5) zt: scroll cursor to top,

zb: bottom, zz: center
(6) gg: top of file (vim only),

: open file under cursor (vim only)

\_ Fora graphical vi/vim tutorial & more tips, go to www.viemu.com - home of ViEmu, vi/vim emulation for Microsoft Visual Studio

S/

https://duckduckgo.com/?q=vim+tutorial

Lecture 10: Things That Will Make Your Life Significantly Easier

October 5, 2020



CS631 - Advanced Programming in the UNIX Environment Slide 11

Compilers

A compiler translates source code from a high-level programming
language into machine code for a given architecture by performing a
number of steps:

@ |exical analysis

@ preprocessing

@ parsing

@ semantic analysis
@ code optimization
@ code generation
@ assembly

@ linking

Lecture 10: Things That Will Make Your Life Significantly Easier October 5, 2020



Compilers

CS631 - Advanced Programming in the UNIX Environment

Slide 12

Language 1 source code

| Language 2 source code

Compiler front-end for language 1 Compiler front-end for language 2
Lexical Analyzer (Scanner) Lexical Analyzer (Scanner)
Syntax/Semantic Syntax/Semantic
Analyzer (Farser) Analyzer (Farser)
Intermediate-code Intermediate-code
Generatar Generator

MNon-optimized intermediate code Mon-optimized intermediate code

[ Intermediate code optimizer]
Cptimized intermediate code

/ \

Target-1 Target-2
Code Generator Code Generator
l'l'arget—l machine code l'l'arget—2 machine code

Lecture 10: Things That Will Make Your Life Significantly Easier

October 5, 2020



CS631 - Advanced Programming in the UNIX Environment Slide 13

Compilers

There are many different closed- and open-source compiler chains:

@ Intel C/C++ Compiler (or icc)
@ Turbo C/ Turbo C++ / C++Builder (Borland)

@ Microsoft Visual C++
@ ..

@ Clang (a frontend to LLVM)
@ GNU Compiler Collection (or gcc)

@ Portable C Compiler (or pcc)
@ .

Lecture 10: Things That Will Make Your Life Significantly Easier October 5, 2020



CS631 - Advanced Programming in the UNIX Environment Slide 14

The compiler toolchain

The compiler chain or driver usually performs preprocessing (e.g. via
cpp (1)), compilation (cc (1)), assembly (as (1)) and linking (1d(1)).

Lecture 10: Things That Will Make Your Life Significantly Easier October 5, 2020



CS631 - Advanced Programming in the UNIX Environment Slide 15

Preprocessing

The compiler chain or driver usually performs preprocessing (e.g. via
cpp (1)), compilation (cc (1)), assembly (as (1)) and linking (1d(1)).

cd compilechain

cat hello.c

man cpp

cpp hello.c hello.1

file hello.1

man cc

cc -v -E hello.c > hello.1

more hello.1

cc -v -DF00D=\"Avocado\" -E hello.c > hello.i.2
diff -bu hello.i hello.i.2

S B P & P P fH P P hH

Lecture 10: Things That Will Make Your Life Significantly Easier October 5, 2020



CS631 - Advanced Programming in the UNIX Environment Slide 16

Compilation

The compiler chain or driver usually performs preprocessing (e.g. via
cpp (1)), compilation (cc (1)), assembly (as (1)) and linking (1d(1)).

$ more hello.i
$ cc -v -S hello.i
$ file hello.s

$ more hello.s

Lecture 10: Things That Will Make Your Life Significantly Easier October 5, 2020



CS631 - Advanced Programming in the UNIX Environment Slide 17

Assembly

The compiler chain or driver usually performs preprocessing (e.g. via
cpp (1)), compilation (cc (1)), assembly (as (1)) and linking (1d(1)).

as -o hello.o hello.s
file hello.o

cc -v —-c hello.s
objdump -d hello.o

o]

—m B B & B

Lecture 10: Things That Will Make Your Life Significantly Easier October 5, 2020



CS631 - Advanced Programming in the UNIX Environment Slide 18

Linking

The compiler chain or driver usually performs preprocessing (e.g. via
cpp (1)), compilation (cc (1)), assembly (as (1)) and linking (1d(1)).

$ 1d hello.o

[...]

$ 1d hello.o -1c

[...]

$ cc -v hello.o

[...]

$ 1d -dynamic-linker /usr/libexec/ld.elf_so \
/usr/lib/crt0.0 /usr/lib/crti.o /usr/lib/crtbegin.o \
hello.o -1lc /usr/lib/crtend.o /usr/lib/crtn.o

$ file a.out

$ ./a.out

Lecture 10: Things That Will Make Your Life Significantly Easier October 5, 2020



CS631 - Advanced Programming in the UNIX Environment Slide 19

Linking

The compiler chain or driver usually performs preprocessing (e.g. via
cpp (1)), compilation (cc (1)), assembly (as (1)) and linking (1d(1)).

$ cc -v -DF00D=\"Avocado\" hello.c 2>&1 | more




CS631 - Advanced Programming in the UNIX Environment Slide 20

cc(1) and 1d(1)

The compiler chain or driver usually performs preprocessing (e.g. via
cpp (1)), compilation (cc (1)), assembly (as (1)) and linking (1d(1)).

Different flags can be passed to cc (1) to be passed through to each tool
as well as to affect all tools.

$ cc -v -02 -g hello.c 2>&1 | more




CS631 - Advanced Programming in the UNIX Environment

cc(1) and 1d(1)

The compiler chain or driver usually performs preprocessing (e.g. via
cpp (1)), compilation (cc (1)), assembly (as (1)) and linking (1d(1)).

Different flags can be passed to cc (1) to be passed through to each tool
as well as to affect all tools.

The order of the command line flags may play a role! Directories
searched for libraries via -L and the resolving of undefined symbols via
-1 are examples of position sensitive flags.

$ cc -v main.c -L./1ib2 -L./1ib -1ldtest 2>&1 | more

$ cc -v main.c -L./1ib -L./1ib2 -1ldtest 2>&1 | more

Slide 21




CS631 - Advanced Programming in the UNIX Environment Slide 22

cc(1) and 1d(1)

The compiler chain or driver usually performs preprocessing (e.g. via
cpp (1)), compilation (cc (1)), assembly (as (1)) and linking (1d(1)).

Different flags can be passed to cc (1) to be passed through to each tool
as well as to affect all tools.

The order of the command line flags may play a role! Directories
searched for libraries via -L and the resolving of undefined symbols via
-1 are examples of position sensitive flags.

The behavior of the compiler toolchain may be influenced by
environment variables (eg TMPDIR, SGI_ABI) and/or the compilers default
configuration file (MIPSPro’s /etc/compiler.defaults Or gCC’s specs).

$ cc -v hello.c
$ TMPDIR=/var/tmp cc -v hello.c
$ cc -dumpspec

Lecture 10: Things That Will Make Your Life Significantly Easier October 5, 2020



CS631 - Advanced Programming in the UNIX Environment Slide 23

A Debugger

-.-lﬂ'.'ﬂl-_ - —

Lecture 10: Things That Will Make Your Life Significantly Easier October 5, 2020



CS631 - Advanced Programming in the UNIX Environment Slide 24

gdb (1)

The purpose of a debugger such as gdb (1) is to allow you to see what is
going on “inside” another program while it executes — or what another
program was doing at the moment it crashed. gdb allows you to

@ make your program stop on specified conditions (for example by
setting breakpoints)

@ examine what has happened, when your program has stopped (by
looking at the backtrace, inspecting the value of certain variables)

@ inspect control flow (for example by stepping through the program)

Other interesting things you can do:
@ examine stack frames: info frame, info locals, info args

@ examine memory: x

@ examine assembly: disassemble func

Lecture 10: Things That Will Make Your Life Significantly Easier October 5, 2020



CS631 - Advanced Programming in the UNIX Environment Slide 25

gdb (1)

$ cc simple-ls.c

$ ./a.out “/testdir
Memory fault (core dumped)
$ gdb ./a.out

(gdb) run ~/testdir

Program received signal SIGSEGV, Segmentation fault.

0x0000000000400cc7 in main (argc=2, argv=0x7f7fffa71978) at simple-ls-stat.c:48
warning: Source file is more recent than executable.

48 printf ("%s (%s)\n", dirp->d_name, pwd->pw_name);

(gdb) bt

(gdb) frame O
(gdb) 1i

(gdb) print pwd

Lecture 10: Things That Will Make Your Life Significantly Easier October 5, 2020



CS631 - Advanced Programming in the UNIX Environment

gdb (1)

Slide 26

$ cc gdb2.c

$ ./a.out

$ gdb ./a.out a.out.core
(gdb) from 2

(gdb) p argv[1i]

$ ./a.out -1
$ ./a.out 123456789012345

$ ./a.out 1
123456789

$ gdb ./a.out
(gdb) break main
(gdb) run 1
(gdb) p buf
(gdb) p buf2

Lecture 10: Things That Will Make Your Life Significantly Easier

October 5, 2020



CS631 - Advanced Programming in the UNIX Environment Slide 27

(gdb) call sizeof buf
(gdb) p buf
(gdb) p (buf+8)




CS631 - Advanced Programming in the UNIX Environment Slide 28

make (1)

Lecture 10: Things That Will Make Your Life Significantly Easier October 5, 2020



CS631 - Advanced Programming in the UNIX Environment Slide 29

make (1)

make (1) is @ command generator and build utility. Using a description file

(usually Makefile) it creates a sequence of commands for execution by
the shell.

@ used to sort out dependency relations among files




CS631 - Advanced Programming in the UNIX Environment Slide 30

make (1)

make (1) is @ command generator and build utility. Using a description file

(usually Makefile) it creates a sequence of commands for execution by
the shell.

@ used to sort out dependency relations among files

@ avoids having to rebuild the entire project after modification of a
single source file




CS631 - Advanced Programming in the UNIX Environment

make (1)

make (1) is @ command generator and build utility. Using a description file
(usually Makefile) it creates a sequence of commands for execution by
the shell.

@ used to sort out dependency relations among files

@ avoids having to rebuild the entire project after modification of a
single source file

@ performs selective rebuilds following a dependency graph

Slide 31




CS631 - Advanced Programming in the UNIX Environment

make (1)

make (1) is @ command generator and build utility. Using a description file
(usually Makefile) it creates a sequence of commands for execution by
the shell.

@ used to sort out dependency relations among files

@ avoids having to rebuild the entire project after modification of a
single source file

@ performs selective rebuilds following a dependency graph

@ allows simplification of rules through use of macros and suffixes,
some of which are internally defined

Slide 32




CS631 - Advanced Programming in the UNIX Environment Slide 33

make (1)

make (1) is @ command generator and build utility. Using a description file
(usually Makefile) it creates a sequence of commands for execution by
the shell.

@ used to sort out dependency relations among files

@ avoids having to rebuild the entire project after modification of a
single source file

@ performs selective rebuilds following a dependency graph

@ allows simplification of rules through use of macros and suffixes,
some of which are internally defined

@ different versions of make (1) (BSD make, GNU make, Sys V make,
...) may differ (among other things) in
@ variable assignment and expansion/substitution
@ including other files
@ flow control (for-loops, conditionals etc.)

Lecture 10: Things That Will Make Your Life Significantly Easier October 5, 2020



CS631 - Advanced Programming in the UNIX Environment

make (1)

$ cd make-examples

$ 1s *.[ch]
cmp.c ls.c main.c stat_flags.c util.c
extern.h 1s.h print.c stat_flags.h

Slide 34

Lecture 10: Things That Will Make Your Life Significantly Easier

October 5, 2020



CS631 - Advanced Programming in the UNIX Environment

make (1)

$ cd make-examples

$ 1s *.[ch]
cmp.c ls.c main.c stat_flags.c util.c
extern.h 1s.h print.c stat_flags.h

Slide 35

Lecture 10: Things That Will Make Your Life Significantly Easier

October 5, 2020



CS631 - Advanced Programming in the UNIX Environment

make (1)

$ cd make-examples

$ 1s *.[ch]
cmp.c ls.c main.c stat_flags.c util.c
extern.h 1s.h print.c stat_flags.h

Slide 36

Lecture 10: Things That Will Make Your Life Significantly Easier

October 5, 2020



CS631 - Advanced Programming in the UNIX Environment

make (1)

$ cd make-examples

$ 1s *.[ch]
cmp.c 1s.c main.c stat_flags.c util.c
extern.h 1s.h print.c stat_flags.h

Slide 37

Lecture 10: Things That Will Make Your Life Significantly Easier

October 5, 2020



CS631 - Advanced Programming in the UNIX Environment

make (1)

$ cd make-examples

$ 1s *.[ch]
cmp.c 1s.c main.c stat_flags.c util.c
extern.h 1s.h print.c stat_flags.h

Slide 38

Lecture 10: Things That Will Make Your Life Significantly Easier

October 5, 2020



CS631 - Advanced Programming in the UNIX Environment

make (1)

Slide 39

$ 1n -s Makefile.1l Makefile
$ make # or: make -f Makefile.1l

[...]
$ make
[...]

$ make clean
$ export CFLAGS="-Wall -Werror"
$ make

[...]

$ make clean

[...]

$ make showvars

[...]
$ make CFLAGS="${CFLAGS}" showvars
[...]

Repeat with other Makefiles.

Lecture 10: Things That Will Make Your Life Significantly Easier

October 5, 2020



CS631 - Advanced Programming in the UNIX Environment Slide 40

Priority of Macro Assignments for make (1)

1. Internal (default) definitions of make (1)

2. Current shell environment variables. This includes macros that you
enter on the make command line itself.

3. Macro definitions in Makefile.

4. Macros entered on the make (1) command line, if they follow the
make command itself.

Lecture 10: Things That Will Make Your Life Significantly Easier October 5, 2020



CS631 - Advanced Programming in the UNIX Environment Slide 41
Ed is the standard text editor.

$ ed
?
help
?
quit
?
exit
?
bye
?
eat flaming death
?

~C

?

"D

?

Lecture 10: Things That Will Make Your Life Significantly Easier October 5, 2020



CS631 - Advanced Programming in the UNIX Environment Slide 42
Ed is the standard text editor.

$ ed

a

ed is the standard Unix text editor.
This 1s line number two.

21

yAl
3s/two/three/
w foo

q
$ cat foo

Lecture 10: Things That Will Make Your Life Significantly Easier October 5, 2020



CS631 - Advanced Programming in the UNIX Environment Slide 43

diff (1) and patch(1)

diff (1):
@ compares files line by line
@ output may be used to automatically edit a file

@ can produce human “readable” output as well as diff entire directory
structures

@ output called a patch

Lecture 10: Things That Will Make Your Life Significantly Easier October 5, 2020



CS631 - Advanced Programming in the UNIX Environment Slide 44

diff (1) and patch(1)

patch(1):
@ applies a diff (1) file (aka patch) to an original
@ may back up original file
@ may guess correct format
@ ignores leading or trailing “garbage”
@ allows for reversing the patch

@ may even correct context line numbers

Lecture 10: Things That Will Make Your Life Significantly Easier October 5, 2020



CS631 - Advanced Programming in the UNIX Environment Slide 45

diff (1) and patch(1)

$ diff Makefile.2 Makefile.b

[...]

$ cp Makefile.2 /tmp

$ ( diff -e Makefile.2 Makefile.5; echo w; ) | ed Makefile.2
$ diff Makefile. [25]

$ mv /tmp/Makefile.2 .

$ diff -c Makefile. [25]

$ diff -u Makefile.[25] > /tmp/patch

$ patch </tmp/patch

$ diff Makefile. [25]

Lecture 10: Things That Will Make Your Life Significantly Easier October 5, 2020



CS631 - Advanced Programming in the UNIX Environment Slide 46

diff (1) and patch(1)

Difference in 1s(1) between NetBSD and OpenBSD:
$ diff -bur netbsd/src/bin/ls openbsd/src/bin/ls

Difference in 1s(1) between NetBSD and FreeBSD:
$ diff -bur netbsd/src/bin/ls freebsd-1ls/ls

Lecture 10: Things That Will Make Your Life Significantly Easier October 5, 2020



CS631 - Advanced Programming in the UNIX Environment Slide 47

Revision Control

To be continued...

Lecture 10: Things That Will Make Your Life Significantly Easier October 5, 2020



CS631 - Advanced Programming in the UNIX Environment Slide 48

Links

GDB:
https://sourceware.org/gdb/current/onlinedocs/gdb/
http://heather.cs.ucdavis.edu/ " matloff/UnixAndC/CLanguage/Debug.html

http://www.unknownroad.com/rtfm/gdbtut/gdbtoc.html

Lecture 10: Things That Will Make Your Life Significantly Easier October 5, 2020



